Suppr超能文献

利用发育过程进行血管工程和再生。

Harnessing developmental processes for vascular engineering and regeneration.

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.

Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21208, USA

出版信息

Development. 2014 Jul;141(14):2760-9. doi: 10.1242/dev.102194.

Abstract

The formation of vasculature is essential for tissue maintenance and regeneration. During development, the vasculature forms via the dual processes of vasculogenesis and angiogenesis, and is regulated at multiple levels: from transcriptional hierarchies and protein interactions to inputs from the extracellular environment. Understanding how vascular formation is coordinated in vivo can offer valuable insights into engineering approaches for therapeutic vascularization and angiogenesis, whether by creating new vasculature in vitro or by stimulating neovascularization in vivo. In this Review, we will discuss how the process of vascular development can be used to guide approaches to engineering vasculature. Specifically, we will focus on some of the recently reported approaches to stimulate therapeutic angiogenesis by recreating the embryonic vascular microenvironment using biomaterials for vascular engineering and regeneration.

摘要

血管的形成对于组织的维持和再生至关重要。在发育过程中,血管通过血管生成和血管生成这两个过程形成,并在多个水平上受到调节:从转录层次和蛋白质相互作用到来自细胞外环境的输入。了解血管形成如何在体内协调可以为治疗性血管生成和血管生成的工程方法提供有价值的见解,无论是通过在体外创建新的血管还是通过刺激体内的新血管生成。在这篇综述中,我们将讨论如何利用血管发育过程来指导工程血管的方法。具体来说,我们将重点介绍一些最近报道的方法,这些方法通过使用生物材料来进行血管工程和再生,从而重新创建胚胎血管微环境来刺激治疗性血管生成。

相似文献

1
Harnessing developmental processes for vascular engineering and regeneration.
Development. 2014 Jul;141(14):2760-9. doi: 10.1242/dev.102194.
2
Experimental approaches to vascularisation within tissue engineering constructs.
J Biomater Sci Polym Ed. 2015;26(12):683-734. doi: 10.1080/09205063.2015.1059018.
3
Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.
Biomaterials. 2015 Dec;72:61-73. doi: 10.1016/j.biomaterials.2015.08.049. Epub 2015 Aug 29.
4
Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly.
Tissue Eng Part B Rev. 2012 Jun;18(3):203-17. doi: 10.1089/ten.TEB.2011.0521. Epub 2012 Mar 2.
5
Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks.
Trends Biotechnol. 2016 Sep;34(9):733-745. doi: 10.1016/j.tibtech.2016.03.002. Epub 2016 Mar 28.
7
Molecular regulation of vessel maturation.
Nat Med. 2003 Jun;9(6):685-93. doi: 10.1038/nm0603-685.
8
Direct-write and sacrifice-based techniques for vasculatures.
Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109936. doi: 10.1016/j.msec.2019.109936. Epub 2019 Jul 3.
9
Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors.
Biomaterials. 2011 Jan;32(1):95-106. doi: 10.1016/j.biomaterials.2010.08.091. Epub 2010 Sep 25.
10
Engineering vascular networks in porous polymer matrices.
J Biomed Mater Res. 2002 Jun 15;60(4):668-78. doi: 10.1002/jbm.10134.

引用本文的文献

2
Compensatory lymphangiogenesis is required for edema resolution in zebrafish.
Sci Rep. 2025 Mar 10;15(1):8177. doi: 10.1038/s41598-025-92970-1.
4
Enhancing human capillary tube network assembly and maturation through upregulated expression of pericyte-derived TIMP-3.
Front Cell Dev Biol. 2024 Oct 31;12:1465806. doi: 10.3389/fcell.2024.1465806. eCollection 2024.
6
Bioengineering methods for vascularizing organoids.
Cell Rep Methods. 2024 Jun 17;4(6):100779. doi: 10.1016/j.crmeth.2024.100779. Epub 2024 May 16.
7
Comparison of angiogenic potential in vitrified vs. slow frozen human ovarian tissue.
Sci Rep. 2023 Aug 9;13(1):12885. doi: 10.1038/s41598-023-39920-x.
8
Enriched adipose stem cell secretome as an effective therapeutic strategy for in vivo wound repair and angiogenesis.
3 Biotech. 2023 Mar;13(3):83. doi: 10.1007/s13205-023-03496-0. Epub 2023 Feb 13.
10
Lymphatic Tissue and Organ Engineering for In Vitro Modeling and In Vivo Regeneration.
Cold Spring Harb Perspect Med. 2022 Mar 14;12(9). doi: 10.1101/cshperspect.a041169.

本文引用的文献

1
Synthetic hydrogel platform for three-dimensional culture of embryonic stem cell-derived motor neurons.
Biomater Sci. 2013 May 2;1(5):460-469. doi: 10.1039/c3bm00166k. Epub 2013 Jan 24.
3
Hypoxia-inducible hydrogels.
Nat Commun. 2014 Jun 9;5:4075. doi: 10.1038/ncomms5075.
4
Modulation of matrix elasticity with PEG hydrogels to study melanoma drug responsiveness.
Biomaterials. 2014 May;35(14):4310-8. doi: 10.1016/j.biomaterials.2014.01.063. Epub 2014 Feb 22.
5
Photo-click living strategy for controlled, reversible exchange of biochemical ligands.
Adv Mater. 2014 Apr 23;26(16):2521-6. doi: 10.1002/adma.201304847. Epub 2014 Feb 12.
6
Mechanical Properties and Degradation of Chain and Step Polymerized Photodegradable Hydrogels.
Macromolecules. 2013 Apr 9;46(7):2785-92. doi: 10.1021/ma302522x.
7
Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo.
PLoS One. 2013 Dec 30;8(12):e83755. doi: 10.1371/journal.pone.0083755. eCollection 2013.
8
HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo.
Stem Cell Res. 2014 Jan;12(1):24-35. doi: 10.1016/j.scr.2013.09.006. Epub 2013 Oct 2.
9
In situ cell manipulation through enzymatic hydrogel photopatterning.
Nat Mater. 2013 Nov;12(11):1072-8. doi: 10.1038/nmat3766. Epub 2013 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验