Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Centre, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 413 45, Sweden.
EJNMMI Res. 2014 Jun 11;4:23. doi: 10.1186/s13550-014-0023-9. eCollection 2014.
RADIOIODINE IS ROUTINELY USED OR PROPOSED FOR DIAGNOSTIC AND THERAPEUTIC PURPOSES: (123)I, (125)I and (131)I for diagnostics and (125)I and (131)I for therapy. When radioiodine-labelled pharmaceuticals are administered to the body, radioiodide might be released into the circulation and taken up by the thyroid gland, which may then be an organ at risk. The aim of this study was to compare dosimetric properties for (123)I, (125)I and (131)I in previously developed thyroid models for man, rat and mouse.
Dosimetric calculations were performed using the Monte Carlo code MCNPX 2.6.0 and nuclear decay data from ICRP 107. Only the non-radiative transitions in the decays were considered. The S value was determined for the cell nuclei in species-specific thyroid follicle models for mouse, rat and man for different spatial distributions of radioiodine.
For the species-specific single follicle models with radioiodine homogeneously within the follicle lumen, the highest S value came from (131)I, with the largest contribution from the β particles. When radioiodine was homogeneously distributed within the follicle cells or the follicle cell nucleus, the highest contribution originated from (125)I, about two times higher than (123)I, with the largest contribution from the Auger electrons. The mean absorbed dose calculated for our human thyroid multiple follicle model, assuming homogenous distribution of for (123)I, (125)I, or (131)I within the follicle lumens and follicle cells, was 9%, 18% and 4% higher, respectively, compared with the mean absorbed dose according to Medical Internal Radiation Dose (MIRD) formalism and nuclear decay data. When radioiodine was homogeneously distributed in the follicle lumens, our calculations gave up to 90% lower mean absorbed dose for (125)I compared to MIRD (20% lower for (123)I, and 2% lower for (131)I).
This study clearly demonstrates the importance of using more detailed dosimetric methods and models than MIRD formalism for radioiodine, especially (123)I and (125)I, in the thyroid. For radioiodine homogeneously distributed in the follicle lumens our calculations for the human multiple follicle models gave up to 90% lower mean absorbed dose compared with MIRD formalism.
放射性碘通常用于诊断和治疗目的:(123)I、(125)I 和 (131)I 用于诊断,(125)I 和 (131)I 用于治疗。当放射性碘标记的药物被给予人体时,放射性碘可能会释放到循环中,并被甲状腺吸收,甲状腺可能成为危险器官。本研究的目的是比较以前为人体、大鼠和小鼠开发的甲状腺模型中 (123)I、(125)I 和 (131)I 的剂量学特性。
使用蒙特卡罗代码 MCNPX 2.6.0 进行剂量计算,并使用 ICRP 107 中的核衰变数据。仅考虑衰变中的非辐射跃迁。为了不同空间分布的放射性碘,确定了物种特异性甲状腺滤泡模型中细胞核的 S 值。
对于放射性碘在滤泡腔中均匀分布的物种特异性单个滤泡模型,最高的 S 值来自 (131)I,β 粒子的贡献最大。当放射性碘均匀分布在滤泡细胞或滤泡细胞核内时,最高的贡献来自 (125)I,约为 (123)I 的两倍,最大的贡献来自俄歇电子。假设放射性碘在滤泡腔和滤泡细胞内均匀分布,我们计算得到的人类甲状腺多滤泡模型的平均吸收剂量分别比根据医学内部辐射剂量 (MIRD) 公式和核衰变数据计算的平均吸收剂量高 9%、18%和 4%。当放射性碘在滤泡腔中均匀分布时,与 MIRD 相比,我们的计算结果使 (125)I 的平均吸收剂量降低了高达 90%((123)I 降低了 20%,(131)I 降低了 2%)。
本研究清楚地表明,对于甲状腺中的放射性碘,尤其是 (123)I 和 (125)I,使用比 MIRD 公式更详细的剂量学方法和模型非常重要。对于放射性碘均匀分布在滤泡腔中的情况,我们对人类多滤泡模型的计算结果与 MIRD 公式相比,平均吸收剂量降低了高达 90%。