Suppr超能文献

网络间相互作用:振荡性神经元网络之间的连接对振荡频率和模式的影响。

Inter-network interactions: impact of connections between oscillatory neuronal networks on oscillation frequency and pattern.

作者信息

Avella Gonzalez Oscar J, van Aerde Karlijn I, Mansvelder Huibert D, van Pelt Jaap, van Ooyen Arjen

机构信息

Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands.

出版信息

PLoS One. 2014 Jul 9;9(7):e100899. doi: 10.1371/journal.pone.0100899. eCollection 2014.

Abstract

Oscillations in electrical activity are a characteristic feature of many brain networks and display a wide variety of temporal patterns. A network may express a single oscillation frequency, alternate between two or more distinct frequencies, or continually express multiple frequencies. In addition, oscillation amplitude may fluctuate over time. The origin of this complex repertoire of activity remains unclear. Different cortical layers often produce distinct oscillation frequencies. To investigate whether interactions between different networks could contribute to the variety of oscillation patterns, we created two model networks, one generating on its own a relatively slow frequency (20 Hz; slow network) and one generating a fast frequency (32 Hz; fast network). Taking either the slow or the fast network as source network projecting connections to the other, or target, network, we systematically investigated how type and strength of inter-network connections affected target network activity. For high inter-network connection strengths, we found that the slow network was more effective at completely imposing its rhythm on the fast network than the other way around. The strongest entrainment occurred when excitatory cells of the slow network projected to excitatory or inhibitory cells of the fast network. The fast network most strongly imposed its rhythm on the slow network when its excitatory cells projected to excitatory cells of the slow network. Interestingly, for lower inter-network connection strengths, multiple frequencies coexisted in the target network. Just as observed in rat prefrontal cortex, the target network could express multiple frequencies at the same time, alternate between two distinct oscillation frequencies, or express a single frequency with alternating episodes of high and low amplitude. Together, our results suggest that input from other oscillating networks may markedly alter a network's frequency spectrum and may partly be responsible for the rich repertoire of temporal oscillation patterns observed in the brain.

摘要

电活动振荡是许多脑网络的一个特征,呈现出各种各样的时间模式。一个网络可能表达单一振荡频率,在两种或更多不同频率之间交替,或者持续表达多种频率。此外,振荡幅度可能随时间波动。这种复杂活动模式的起源仍不清楚。不同的皮质层通常产生不同的振荡频率。为了研究不同网络之间的相互作用是否会导致振荡模式的多样性,我们创建了两个模型网络,一个自行产生相对较慢的频率(20赫兹;慢网络),另一个产生较快的频率(32赫兹;快网络)。将慢网络或快网络作为源网络,向另一个即目标网络投射连接,我们系统地研究了网络间连接的类型和强度如何影响目标网络的活动。对于高网络间连接强度,我们发现慢网络比快网络更有效地将其节律完全强加给快网络。当慢网络的兴奋性细胞投射到快网络的兴奋性或抑制性细胞时,出现最强的同步。当快网络的兴奋性细胞投射到慢网络的兴奋性细胞时,快网络最强烈地将其节律强加给慢网络。有趣的是,对于较低的网络间连接强度,目标网络中存在多种频率共存的情况。正如在大鼠前额叶皮层中观察到的那样,目标网络可以同时表达多种频率,在两种不同的振荡频率之间交替,或者表达具有高低振幅交替片段的单一频率。总之,我们的结果表明,来自其他振荡网络的输入可能会显著改变一个网络的频谱,并且可能部分地解释了在大脑中观察到的丰富的时间振荡模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c65/4090128/0f846afdfc79/pone.0100899.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验