Suppr超能文献

在兔模型中使用双层水凝胶包裹软骨生成和骨生成预分化间充质干细胞修复骨软骨缺损。

Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model.

作者信息

Lam J, Lu S, Lee E J, Trachtenberg J E, Meretoja V V, Dahlin R L, van den Beucken J J J P, Tabata Y, Wong M E, Jansen J A, Mikos A G, Kasper F K

机构信息

Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, USA.

Department of Biomaterials, Radboud umc, Nijmegen, The Netherlands.

出版信息

Osteoarthritis Cartilage. 2014 Sep;22(9):1291-300. doi: 10.1016/j.joca.2014.06.035. Epub 2014 Jul 4.

Abstract

OBJECTIVE

To investigate the ability of cell-laden bilayered hydrogels encapsulating chondrogenically and osteogenically (OS) pre-differentiated mesenchymal stem cells (MSCs) to effect osteochondral defect repair in a rabbit model. By varying the period of chondrogenic pre-differentiation from 7 (CG7) to 14 days (CG14), the effect of chondrogenic differentiation stage on osteochondral tissue repair was also investigated.

METHODS

Rabbit MSCs were subjected to either chondrogenic or osteogenic pre-differentiation, encapsulated within respective chondral/subchondral layers of a bilayered hydrogel construct, and then implanted into femoral condyle osteochondral defects. Rabbits were randomized into one of four groups (MSC/MSC, MSC/OS, CG7/OS, and CG14/OS; chondral/subchondral) and received two similar constructs bilaterally. Defects were evaluated after 12 weeks.

RESULTS

All groups exhibited similar overall neo-tissue filling. The delivery of OS cells when compared to undifferentiated MSCs in the subchondral construct layer resulted in improvements in neo-cartilage thickness and regularity. However, the addition of CG cells in the chondral layer, with OS cells in the subchondral layer, did not augment tissue repair as influenced by the latter when compared to the control. Instead, CG7/OS implants resulted in more irregular neo-tissue surfaces when compared to MSC/OS implants. Notably, the delivery of CG7 cells, when compared to CG14 cells, with OS cells stimulated morphologically superior cartilage repair. However, neither osteogenic nor chondrogenic pre-differentiation affected detectable changes in subchondral tissue repair.

CONCLUSIONS

Cartilage regeneration in osteochondral defects can be enhanced by MSCs that are chondrogenically and osteogenically pre-differentiated prior to implantation. Longer chondrogenic pre-differentiation periods, however, lead to diminished cartilage repair.

摘要

目的

研究包裹软骨生成和成骨(OS)预分化间充质干细胞(MSC)的载细胞双层水凝胶修复兔模型骨软骨缺损的能力。通过将软骨生成预分化时间从7天(CG7)改变为14天(CG14),还研究了软骨生成分化阶段对骨软骨组织修复的影响。

方法

将兔MSC进行软骨生成或成骨预分化,封装在双层水凝胶构建体的相应软骨层/软骨下骨层中,然后植入股骨髁骨软骨缺损处。将兔子随机分为四组之一(MSC/MSC、MSC/OS、CG7/OS和CG14/OS;软骨层/软骨下骨层),双侧接受两个相似的构建体。12周后评估缺损情况。

结果

所有组的新生组织总体填充情况相似。与软骨下构建体层中未分化的MSC相比,OS细胞的递送使新生软骨厚度和规则性得到改善。然而,与对照组相比,在软骨层中添加CG细胞和在软骨下骨层中添加OS细胞并没有增强受后者影响的组织修复。相反,与MSC/OS植入物相比,CG7/OS植入物导致新生组织表面更不规则。值得注意的是,与CG14细胞相比,CG7细胞与OS细胞一起递送刺激了形态上更优的软骨修复。然而,成骨或软骨生成预分化均未影响软骨下组织修复的可检测变化。

结论

植入前进行软骨生成和成骨预分化的MSC可增强骨软骨缺损中的软骨再生。然而,更长的软骨生成预分化时间会导致软骨修复减弱。

相似文献

4
Bilayered, peptide-biofunctionalized hydrogels for in vivo osteochondral tissue repair.
Acta Biomater. 2021 Jul 1;128:120-129. doi: 10.1016/j.actbio.2021.04.038. Epub 2021 Apr 27.
8
Human Amniotic Mesenchymal Stem Cell Sheets Encapsulating Cartilage Particles Facilitate Repair of Rabbit Osteochondral Defects.
Am J Sports Med. 2020 Mar;48(3):599-611. doi: 10.1177/0363546519897912. Epub 2020 Jan 15.
9
3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects.
Acta Biomater. 2020 Sep 1;113:130-143. doi: 10.1016/j.actbio.2020.05.040. Epub 2020 Jun 4.

引用本文的文献

1
Bioenergetic-active hydrogel drives extracellular matrix synthesis for cartilage repair.
Bioact Mater. 2025 Aug 11;54:34-46. doi: 10.1016/j.bioactmat.2025.07.043. eCollection 2025 Dec.
3
Protecting the regenerative environment: selecting the optimal delivery vehicle for cartilage repair-a narrative review.
Front Bioeng Biotechnol. 2024 Jan 25;12:1283752. doi: 10.3389/fbioe.2024.1283752. eCollection 2024.
6
Enhancement strategies for mesenchymal stem cells and related therapies.
Stem Cell Res Ther. 2022 Feb 21;13(1):75. doi: 10.1186/s13287-022-02747-w.
7
Bilayered, peptide-biofunctionalized hydrogels for in vivo osteochondral tissue repair.
Acta Biomater. 2021 Jul 1;128:120-129. doi: 10.1016/j.actbio.2021.04.038. Epub 2021 Apr 27.
8
A Rabbit Femoral Condyle Defect Model for Assessment of Osteochondral Tissue Regeneration.
Tissue Eng Part C Methods. 2020 Nov;26(11):554-564. doi: 10.1089/ten.TEC.2020.0261. Epub 2020 Nov 11.

本文引用的文献

1
Maximizing cartilage formation and integration via a trajectory-based tissue engineering approach.
Biomaterials. 2014 Feb;35(7):2140-8. doi: 10.1016/j.biomaterials.2013.11.031. Epub 2013 Dec 4.
4
Stem cell therapies for knee cartilage repair: the current status of preclinical and clinical studies.
Am J Sports Med. 2014 Sep;42(9):2253-61. doi: 10.1177/0363546513508744. Epub 2013 Nov 12.
5
Treatment of cartilage defects of the knee: expanding on the existing algorithm.
Clin J Sport Med. 2014 Jan;24(1):21-30. doi: 10.1097/JSM.0000000000000004.
8
Bone marrow stimulation induces greater chondrogenesis in trochlear vs condylar cartilage defects in skeletally mature rabbits.
Osteoarthritis Cartilage. 2013 Jul;21(7):999-1007. doi: 10.1016/j.joca.2013.04.010. Epub 2013 Apr 20.
9
Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model.
J Control Release. 2013 Jun 10;168(2):166-78. doi: 10.1016/j.jconrel.2013.03.013. Epub 2013 Mar 28.
10
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer.
Osteoarthritis Cartilage. 2013 Jun;21(6):860-8. doi: 10.1016/j.joca.2013.03.014. Epub 2013 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验