Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter EX4 4QF, UK.
Nature. 2014 Jul 10;511(7508):206-11. doi: 10.1038/nature13487.
The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent 'smart' glasses, 'smart' contact lenses and artificial retina devices.
开发出折射率可按需光学变换的材料,如基于硫属化物的相变材料,通过提供廉价、高速、便携和可靠的平台,极大地改变了媒体和数据存储行业,这些平台能够存储大量数据。相变材料在响应热等刺激时在两种固态——非晶态和晶态——之间切换,材料的物理性质随之发生变化,包括光吸收、电导率和杨氏模量。这些材料的最初应用(特别是锗锑碲合金 Ge2Sb2Te5)利用了它们在可重写光数据存储技术中的光学性质的可逆变化。最近,在开发非易失性相变存储器的过程中,它们的电导率变化也得到了广泛研究。在这里,我们展示了通过结合这些材料的光学和电子性质调制,可以创建超越数据存储的显示和数据可视化应用。我们使用极薄的相变材料和透明导体,演示了在反射和半透明模式下电诱导的稳定颜色变化。此外,我们展示了如何在刚性和柔性薄膜上使用像素化方法进行显示。这种使用低维相变材料的光电框架有许多可能的应用,例如具有纳米级像素的超快、全固态显示器、半透明“智能”眼镜、“智能”隐形眼镜和人工视网膜设备。