Jiao Shuhui, Zhao Kang, Jiang Jianhui, Zhao Kailin, Guo Qin, Wang Jingbo, Zhang Yansong, Chen Gang, Cheng Qian, Zuo Pei, Han Weina
Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China.
Nanophotonics. 2024 Mar 13;13(9):1645-1655. doi: 10.1515/nanoph-2024-0005. eCollection 2024 Apr.
Manipulating the thermal emission in the infrared (IR) range significantly impacts both fundamental scientific research and various technological applications, including IR thermal camouflage, information encryption, and radiative cooling. While prior research has put forth numerous materials and structures for these objectives, the significant challenge lies in attaining spatially resolved and dynamically multilevel control over their thermal emissions. In this study, a one-step ultrafast laser writing technique is experimentally demonstrated to achieve position-selective control over thermal emission based on the phase-change material GeSbTe (GST). Ultrafast laser writing technique enables direct fabrication and manipulation of laser-induced crystalline micro/nano-structures on GST films. Thermal emission can be precisely controlled by adjusting the pulse energy of the ultrafast laser, achieving a high thermal emissivity modulation precision of 0.0014. By controlling thermal emission, the ultrafast laser writing technique enables multilevel patterned processing. This provides a promising approach for multilevel IR thermal camouflage, which is demonstrated with emissivity-modulated GST emitters. Remarkably, ultrafast laser-induced crystalline micro/nano-structures display geometric grating features, resulting in a diffraction-based structural color effect. This study demonstrates the effective use of laser-printed patterns for storing information in both visible and infrared spectrum.
在红外(IR)波段操纵热发射对基础科学研究和各种技术应用都有重大影响,包括红外热伪装、信息加密和辐射冷却。虽然先前的研究已经提出了许多用于这些目标的材料和结构,但重大挑战在于实现对其热发射的空间分辨和动态多级控制。在本研究中,通过实验证明了一种一步超快激光写入技术,可基于相变材料锗锑碲(GST)实现对热发射的位置选择性控制。超快激光写入技术能够在GST薄膜上直接制造和操纵激光诱导的晶体微/纳米结构。通过调整超快激光的脉冲能量,可以精确控制热发射,实现高达0.0014的高热发射率调制精度。通过控制热发射,超快激光写入技术能够实现多级图案化处理。这为多级红外热伪装提供了一种有前景的方法,通过发射率调制的GST发射器进行了演示。值得注意的是,超快激光诱导的晶体微/纳米结构呈现出几何光栅特征,产生基于衍射的结构色效应。本研究证明了激光打印图案在可见光和红外光谱中存储信息的有效应用。