Sokhoyan Ruzan, Thureja Prachi, Sisler Jared, Grajower Meir, Shayegan Komron, Feigenbaum Eyal, Elhadj Selim, Atwater Harry A
Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
National Ignition Facility and Photon Science, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
Nanophotonics. 2023 Jan 18;12(2):239-253. doi: 10.1515/nanoph-2022-0594. eCollection 2023 Jan.
Active metasurfaces designed to operate at optical frequencies are flat optical elements that can dynamic, subwavelength-scale wavefront control of reflected or transmitted light. The practical and fundamental power-handling limits of active metasurfaces at high pulse energies and high average powers determine the potential applications for these emerging photonic components. Here, we investigate thermal performance limits of reflective gate-tunable conducting oxide metasurfaces illuminated with high power density laser beams, for both continuous wave (CW) and pulsed laser illumination. Our gate-tunable metasurfaces use indium tin oxide (ITO) as an active material, which undergoes an epsilon-near-zero (ENZ) transition under applied electrical bias. We experimentally show that under CW illumination, there is no significant change in the electrically tunable metasurface optical response for high irradiances ranging from 1.6 kW/cm to 9.1 kW/cm when the illuminating laser beam diameter is 7 μm. Even under an applied bias, when over 60% of the incoming light is absorbed in a 1 nm-thick charge accumulation layer within ITO, the local temperature rise in the metasurface is modest, supporting its robustness for high-power applications. Additionally, we theoretically show that in the ENZ regime, the metasurface reflectance can be increased by a factor of 10 by replacing the active ITO layer with cadmium oxide (CdO). Thus conducting oxide metasurfaces can tolerate the power densities needed in higher power applications, including free space optical communications, to light detection and ranging (LiDAR), as well as laser-based additive manufacturing.
设计用于在光频下运行的有源超表面是一种平面光学元件,能够对反射光或透射光进行动态的亚波长尺度波前控制。有源超表面在高脉冲能量和高平均功率下的实际和基本功率处理限制决定了这些新兴光子组件的潜在应用。在这里,我们研究了用高功率密度激光束照射的反射式栅极可调谐导电氧化物超表面在连续波(CW)和脉冲激光照射下的热性能极限。我们的栅极可调谐超表面使用氧化铟锡(ITO)作为活性材料,该材料在施加电偏压时会经历近零介电常数(ENZ)转变。我们通过实验表明,在连续波照射下,当照明激光束直径为7μm时,对于1.6kW/cm至9.1kW/cm的高辐照度,电可调谐超表面的光学响应没有显著变化。即使在施加偏压的情况下,当超过60%的入射光在ITO内1nm厚的电荷积累层中被吸收时,超表面的局部温度升高也很适度,这支持了其在高功率应用中的稳健性。此外,我们从理论上表明,在ENZ regime中,通过用氧化镉(CdO)代替活性ITO层,超表面反射率可以提高10倍。因此,导电氧化物超表面能够承受包括自由空间光通信、光探测和测距(LiDAR)以及基于激光的增材制造等高功率应用所需的功率密度。