Pierella Karlusich Juan J, Lodeyro Anabella F, Carrillo Néstor
Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
J Exp Bot. 2014 Oct;65(18):5161-78. doi: 10.1093/jxb/eru273. Epub 2014 Jul 9.
Ferredoxins are electron shuttles harbouring iron-sulfur clusters that connect multiple oxido-reductive pathways in organisms displaying different lifestyles. Some prokaryotes and algae express an isofunctional electron carrier, flavodoxin, which contains flavin mononucleotide as cofactor. Both proteins evolved in the anaerobic environment preceding the appearance of oxygenic photosynthesis. The advent of an oxygen-rich atmosphere proved detrimental to ferredoxin owing to iron limitation and oxidative damage to the iron-sulfur cluster, and many microorganisms induced flavodoxin expression to replace ferredoxin under stress conditions. Paradoxically, ferredoxin was maintained throughout the tree of life, whereas flavodoxin is absent from plants and animals. Of note is that flavodoxin expression in transgenic plants results in increased tolerance to multiple stresses and iron deficit, through mechanisms similar to those operating in microorganisms. Then, the question remains open as to why a trait that still confers plants such obvious adaptive benefits was not retained. We compare herein the properties of ferredoxin and flavodoxin, and their contrasting modes of expression in response to different environmental stimuli. Phylogenetic analyses suggest that the flavodoxin gene was already absent in the algal lineages immediately preceding land plants. Geographical distribution of phototrophs shows a bias against flavodoxin-containing organisms in iron-rich coastal/freshwater habitats. Based on these observations, we propose that plants evolved from freshwater macroalgae that already lacked flavodoxin because they thrived in an iron-rich habitat with no need to back up ferredoxin functions and therefore no selective pressure to keep the flavodoxin gene. Conversely, ferredoxin retention in the plant lineage is probably related to its higher efficiency as an electron carrier, compared with flavodoxin. Several lines of evidence supporting these contentions are presented and discussed.
铁氧化还原蛋白是携带铁硫簇的电子穿梭体,在具有不同生活方式的生物体中连接多种氧化还原途径。一些原核生物和藻类表达一种同功能电子载体——黄素氧还蛋白,它含有黄素单核苷酸作为辅因子。这两种蛋白质都是在有氧光合作用出现之前的厌氧环境中进化而来的。由于铁限制和铁硫簇的氧化损伤,富氧大气的出现对铁氧化还原蛋白不利,许多微生物在应激条件下诱导黄素氧还蛋白表达以取代铁氧化还原蛋白。矛盾的是,铁氧化还原蛋白在整个生命树中都得以保留,而植物和动物中却没有黄素氧还蛋白。值得注意的是,转基因植物中黄素氧还蛋白的表达通过与微生物中类似的机制,提高了对多种胁迫和铁缺乏的耐受性。那么,一个仍然赋予植物如此明显适应性益处的性状为何没有被保留,这个问题仍然悬而未决。我们在此比较铁氧化还原蛋白和黄素氧还蛋白的特性,以及它们在响应不同环境刺激时截然不同的表达模式。系统发育分析表明,就在陆地植物之前的藻类谱系中已经不存在黄素氧还蛋白基因。光合生物的地理分布显示,在富含铁的沿海/淡水栖息地中,含有黄素氧还蛋白的生物存在偏差。基于这些观察结果,我们提出植物是从已经缺乏黄素氧还蛋白的淡水大型藻类进化而来的,因为它们在富含铁的栖息地中茁壮成长,无需备份铁氧化还原蛋白的功能,因此没有保留黄素氧还蛋白基因的选择压力。相反,植物谱系中铁氧化还原蛋白的保留可能与其作为电子载体比黄素氧还蛋白具有更高的效率有关。本文提出并讨论了支持这些论点的几条证据。