Suppr超能文献

前额叶皮层、尾状核和丘脑的功能网络镜像:高分辨率功能成像和结构连接。

Functional network mirrored in the prefrontal cortex, caudate nucleus, and thalamus: high-resolution functional imaging and structural connectivity.

机构信息

Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, 04103, Leipzig, Germany

Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, 04103, Leipzig, Germany.

出版信息

J Neurosci. 2014 Jul 9;34(28):9202-12. doi: 10.1523/JNEUROSCI.0228-14.2014.

Abstract

Despite myriads of studies on a parallel organization of cortico-striatal-thalamo-cortical loops, direct evidence of this has been lacking for the healthy human brain. Here, we scrutinize the functional specificity of the cortico-subcortical loops depending on varying levels of cognitive hierarchy as well as their structural connectivity with high-resolution fMRI and diffusion-weighted MRI (dMRI) at 7 tesla. Three levels of cognitive hierarchy were implemented in two domains: second language and nonlanguage. In fMRI, for the higher level, activations were found in the ventroanterior portion of the prefrontal cortex (PFC), the head of the caudate nucleus (CN), and the ventral anterior nucleus (VA) in the thalamus. Conversely, for the lower level, activations were located in the posterior region of the PFC, the body of the CN, and the medial dorsal nucleus (MD) in the thalamus. This gradient pattern of activations was furthermore shown to be tenable by the parallel connectivity in dMRI tractography connecting the anterior regions of the PFC with the head of the CN and the VA in the thalamus, whereas the posterior activations of the PFC were linked to the body of the CN and the MD in the thalamus. This is the first human in vivo study combining fMRI and dMRI showing that the functional specificity is mirrored within the cortico-subcortical loop substantiated by parallel networks.

摘要

尽管有无数关于皮质-纹状体-丘脑-皮质回路的平行组织的研究,但对于健康的人类大脑,一直缺乏直接的证据。在这里,我们通过在 7 特斯拉下使用高分辨率 fMRI 和扩散加权 MRI(dMRI),仔细研究了皮质-皮质下回路的功能特异性,以及它们与认知层次的不同水平的结构连接。在两个领域中实施了三个认知层次:第二语言和非语言。在 fMRI 中,对于较高层次,在前额叶皮层(PFC)的腹前部分、尾状核头部(CN)和丘脑腹前核(VA)中发现了激活。相反,对于较低层次,激活位于 PFC 的后区、CN 的体部和丘脑的内侧背核(MD)中。这种激活的梯度模式通过 dMRI 轨迹连接 PFC 的前区与 CN 的头部和丘脑的 VA 的平行连接来证明是可行的,而 PFC 的后区则与 CN 的体部和丘脑的 MD 相连。这是第一个结合 fMRI 和 dMRI 的人类体内研究,表明功能特异性通过平行网络在皮质-皮质下回路中得到反映。

相似文献

2
Anatomical connectivity between subcortical structures.
Brain Connect. 2011;1(2):111-8. doi: 10.1089/brain.2011.0011.
3
Feasibility of prefronto-caudate pathway tractography using high resolution diffusion tensor tractography data at 3T.
J Neurosci Methods. 2010 Aug 30;191(2):249-54. doi: 10.1016/j.jneumeth.2010.06.026. Epub 2010 Jun 30.
4
Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study.
Neurosci Lett. 2007 May 29;419(2):113-8. doi: 10.1016/j.neulet.2007.04.049. Epub 2007 May 4.
5
Differential motor and prefrontal cerebello-cortical network development: Evidence from multimodal neuroimaging.
Neuroimage. 2016 Jan 1;124(Pt A):591-601. doi: 10.1016/j.neuroimage.2015.09.022. Epub 2015 Sep 21.
6
Structural and functional connectivity of the nondecussating dentato-rubro-thalamic tract.
Neuroimage. 2018 Aug 1;176:364-371. doi: 10.1016/j.neuroimage.2018.04.074. Epub 2018 May 4.
7
Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography.
Neuroimage. 2010 Jun;51(2):555-64. doi: 10.1016/j.neuroimage.2010.02.062. Epub 2010 Mar 4.
8
Connections of the dorsolateral prefrontal cortex with the thalamus: a probabilistic tractography study.
Surg Radiol Anat. 2016 Aug;38(6):705-10. doi: 10.1007/s00276-015-1603-8. Epub 2015 Dec 22.
10
Functional parcellation of human and macaque striatum reveals human-specific connectivity in the dorsal caudate.
Neuroimage. 2021 Jul 15;235:118006. doi: 10.1016/j.neuroimage.2021.118006. Epub 2021 Apr 2.

引用本文的文献

1
Characteristics and prognosis of language impairment in subcortical aphasia of acute stroke patients.
Front Neurol. 2025 Jul 16;16:1630365. doi: 10.3389/fneur.2025.1630365. eCollection 2025.
2
Fiber architecture in the human ventromedial striatum and its relation with the bed nucleus of the stria terminalis.
PLoS One. 2025 May 7;20(5):e0323113. doi: 10.1371/journal.pone.0323113. eCollection 2025.
4
Cognitive Control.
Annu Rev Psychol. 2025 Jan;76(1):167-195. doi: 10.1146/annurev-psych-022024-103901. Epub 2024 Dec 3.
6
Contributions of the left and right thalami to language: A meta-analytic approach.
Brain Struct Funct. 2024 Dec;229(9):2149-2166. doi: 10.1007/s00429-024-02795-3. Epub 2024 Apr 16.
7
Cognitive and Neural Representations of Fractals in Vision, Music, and Action.
Adv Neurobiol. 2024;36:935-951. doi: 10.1007/978-3-031-47606-8_46.
8
Exploring the neurobiology of Merge at a basic level: insights from a novel artificial grammar paradigm.
Front Psychol. 2023 May 23;14:1151518. doi: 10.3389/fpsyg.2023.1151518. eCollection 2023.
9
Neural correlates of sequence learning in children with developmental dyslexia.
Hum Brain Mapp. 2022 Aug 1;43(11):3559-3576. doi: 10.1002/hbm.25868. Epub 2022 Apr 18.
10
Individualized Functional Subnetworks Connect Human Striatum and Frontal Cortex.
Cereb Cortex. 2022 Jun 16;32(13):2868-2884. doi: 10.1093/cercor/bhab387.

本文引用的文献

1
Beyond cytoarchitectonics: the internal and external connectivity structure of the caudate nucleus.
PLoS One. 2013 Jul 26;8(7):e70141. doi: 10.1371/journal.pone.0070141. Print 2013.
3
Functional imaging of the thalamus in language.
Brain Lang. 2013 Jul;126(1):62-72. doi: 10.1016/j.bandl.2012.06.004. Epub 2012 Sep 12.
4
System for integrated neuroimaging analysis and processing of structure.
Neuroinformatics. 2013 Jan;11(1):91-103. doi: 10.1007/s12021-012-9159-9.
5
Finding parallels in fronto-striatal organization.
Trends Cogn Sci. 2012 Aug;16(8):407-8. doi: 10.1016/j.tics.2012.06.009. Epub 2012 Jun 30.
6
An anterior-posterior gradient of cognitive control within the dorsomedial striatum.
Neuroimage. 2012 Aug 1;62(1):41-7. doi: 10.1016/j.neuroimage.2012.05.021. Epub 2012 May 14.
7
Microstructural organizational patterns in the human corticostriatal system.
J Neurophysiol. 2012 Jun;107(11):2984-95. doi: 10.1152/jn.00995.2011. Epub 2012 Feb 29.
8
k-space and q-space: combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7 T.
Neuroimage. 2012 Apr 2;60(2):967-78. doi: 10.1016/j.neuroimage.2011.12.081. Epub 2012 Jan 9.
10
High-field FMRI for human applications: an overview of spatial resolution and signal specificity.
Open Neuroimag J. 2011;5:74-89. doi: 10.2174/1874440001105010074. Epub 2011 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验