Suppr超能文献

基于主体和有限元耦合模型预测心肌梗死后瘢痕结构

Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction.

作者信息

Rouillard Andrew D, Holmes Jeffrey W

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.

Department of Biomedical Engineering, Department of Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.

出版信息

Prog Biophys Mol Biol. 2014 Aug;115(2-3):235-43. doi: 10.1016/j.pbiomolbio.2014.06.010. Epub 2014 Jul 8.

Abstract

Following myocardial infarction, damaged muscle is gradually replaced by collagenous scar tissue. The structural and mechanical properties of the scar are critical determinants of heart function, as well as the risk of serious post-infarction complications such as infarct rupture, infarct expansion, and progression to dilated heart failure. A number of therapeutic approaches currently under development aim to alter infarct mechanics in order to reduce complications, such as implantation of mechanical restraint devices, polymer injection, and peri-infarct pacing. Because mechanical stimuli regulate scar remodeling, the long-term consequences of therapies that alter infarct mechanics must be carefully considered. Computational models have the potential to greatly improve our ability to understand and predict how such therapies alter heart structure, mechanics, and function over time. Toward this end, we developed a straightforward method for coupling an agent-based model of scar formation to a finite-element model of tissue mechanics, creating a multi-scale model that captures the dynamic interplay between mechanical loading, scar deformation, and scar material properties. The agent-based component of the coupled model predicts how fibroblasts integrate local chemical, structural, and mechanical cues as they deposit and remodel collagen, while the finite-element component predicts local mechanics at any time point given the current collagen fiber structure and applied loads. We used the coupled model to explore the balance between increasing stiffness due to collagen deposition and increasing wall stress due to infarct thinning and left ventricular dilation during the normal time course of healing in myocardial infarcts, as well as the negative feedback between strain anisotropy and the structural anisotropy it promotes in healing scar. The coupled model reproduced the observed evolution of both collagen fiber structure and regional deformation following coronary ligation in the rat, and suggests that fibroblast alignment in the direction of greatest stretch provides negative feedback on the level of anisotropy in a scar forming under load. In the future, this coupled model may prove useful in computational design and screening of novel therapies to influence scar formation in mechanically loaded tissues.

摘要

心肌梗死后,受损的心肌会逐渐被胶原瘢痕组织取代。瘢痕的结构和力学特性是心脏功能的关键决定因素,也是心肌梗死后严重并发症(如梗死破裂、梗死扩展和进展为扩张型心力衰竭)风险的关键决定因素。目前正在研发的一些治疗方法旨在改变梗死区力学特性以减少并发症,如植入机械约束装置、注射聚合物和梗死周边起搏。由于机械刺激会调节瘢痕重塑,因此必须仔细考虑改变梗死区力学特性的治疗方法的长期后果。计算模型有潜力极大地提高我们理解和预测此类治疗方法如何随时间改变心脏结构、力学和功能的能力。为此,我们开发了一种直接的方法,将基于代理的瘢痕形成模型与组织力学的有限元模型耦合,创建了一个多尺度模型,该模型捕捉了机械负荷、瘢痕变形和瘢痕材料特性之间的动态相互作用。耦合模型的基于代理的部分预测成纤维细胞在沉积和重塑胶原蛋白时如何整合局部化学、结构和机械线索,而有限元部分则根据当前的胶原纤维结构和施加的负荷预测任何时间点的局部力学特性。我们使用耦合模型来探索心肌梗死正常愈合过程中胶原沉积导致的僵硬度增加与梗死变薄和左心室扩张导致的壁应力增加之间的平衡,以及应变各向异性与其在愈合瘢痕中促进的结构各向异性之间的负反馈。耦合模型再现了大鼠冠状动脉结扎后观察到的胶原纤维结构和区域变形的演变,并表明成纤维细胞在最大拉伸方向上的排列对负荷下形成的瘢痕中的各向异性水平提供负反馈。未来,这种耦合模型可能在计算设计和筛选影响机械负荷组织中瘢痕形成的新疗法方面证明是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验