Suppr超能文献

利用热解溶液在微生物逆向电渗析产甲烷细胞(MRMC)中生成甲烷。

Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.

机构信息

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing, 100084, Peoples' Republic of China.

出版信息

Environ Sci Technol. 2014;48(15):8911-8. doi: 10.1021/es501979z. Epub 2014 Jul 10.

Abstract

The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse-electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack between an anode with exoelectrogenic microorganisms and a methanogenic biocathode. In the MRMC, renewable salinity gradient energy was converted to electrical energy, thus providing the added potential needed for methane evolution from the cathode. The feasibility of the MRMC was examined using three different cathode materials (stainless steel mesh coated with platinum, SS/Pt; carbon cloth coated with carbon black, CC/CB; or a plain graphite fiber brush, GFB) and a thermolytic solution (ammonium bicarbonate) in the RED stack. A maximum methane yield of 0.60 ± 0.01 mol-CH4/mol-acetate was obtained using the SS/Pt biocathode, with a Coulombic recovery of 75 ± 2% and energy efficiency of 7.0 ± 0.3%. The CC/CB biocathode MRMC had a lower methane yield of 0.55 ± 0.02 mol-CH4/mol-acetate, which was twice that of the GFB biocathode MRMC. COD removals (89-91%) and Coulombic efficiencies (74-81%) were similar for all cathode materials. Linear sweep voltammetry and electrochemical impedance spectroscopy tests demonstrated that cathodic microorganisms enhanced electron transfer from the cathode compared to abiotic controls. These results show that the MRMC has significant potential for production of nearly pure methane using low-grade waste heat and a source of waste organic matter at the anode.

摘要

生物电化学系统在甲烷生产中的应用受到了越来越多的关注,但在这些系统中生产甲烷需要额外的电压来克服较大的阴极过电位。为了消除对电网能源的需求,我们通过在阳极和产甲烷生物阴极之间放置一个反向电渗析(RED)堆叠,构建了一个微生物反向电渗析产甲烷电池(MRMC)。在 MRMC 中,可再生盐度梯度能被转化为电能,从而为阴极处的甲烷生成提供所需的附加电势。我们使用三种不同的阴极材料(涂有铂的不锈钢网,SS/Pt;涂有炭黑的碳纤维布,CC/CB;或普通石墨纤维刷,GFB)和 RED 堆叠中的热解溶液(碳酸氢铵)来检验 MRMC 的可行性。使用 SS/Pt 生物阴极时,最大甲烷产率为 0.60±0.01 mol-CH4/mol-acetate,库仑回收率为 75±2%,能量效率为 7.0±0.3%。CC/CB 生物阴极 MRMC 的甲烷产率较低,为 0.55±0.02 mol-CH4/mol-acetate,但是 GFB 生物阴极 MRMC 的两倍。所有阴极材料的 COD 去除率(89-91%)和库仑效率(74-81%)相似。线性扫描伏安法和电化学阻抗谱测试表明,与非生物对照相比,阴极微生物增强了电子从阴极的传递。这些结果表明,MRMC 具有利用低品位废热和阳极处的废有机物源生产近乎纯甲烷的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验