Suppr超能文献

通过一种海洋自养古菌的纯培养物进行甲烷的选择性微生物电化学合成。

Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon.

机构信息

Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.

Department of Microbiology, Max-Planck-Institut für Marine Mikrobiologie, Celsiusstraße 1, 28359 Bremen, Germany.

出版信息

Bioelectrochemistry. 2015 Apr;102:50-5. doi: 10.1016/j.bioelechem.2014.11.004. Epub 2014 Nov 29.

Abstract

Reduction of carbon dioxide to methane by microorganisms attached to electrodes is a promising process in terms of renewable energy storage strategies. However the efficient and specific electrosynthesis of methane by methanogenic archaea on cathodes needs fundamental investigations of the electron transfer mechanisms at the microbe-electrode interface without the addition of artificial electron mediators. Using well-defined electrochemical techniques directly coupled to gas chromatography and surface analysis by scanning electron microscopy, it is shown that a pure culture of the marine lithoautotrophic Methanobacterium-like archaeon strain IM1 is capable to utilize electrons from graphite cathodes for a highly selective production of methane, without hydrogen serving as a cathode-generated electron carrier. Microbial electrosynthesis of methane with cultures of strain IM1 is achieved at a set potential of -0.4V vs. SHE and is characterized by a coulomb efficiency of 80%, with rates reaching 350 nmol d(-1) cm(-2) after 23 days of incubation. Moreover, potential step measurements reveal a biologically catalyzed hydrogen production at potentials more positive than abiotic hydrogen evolution on graphite, indicating that an excessive supply of electrons to strain IM1 results in proton reduction rather than in a further increase of methane production.

摘要

微生物附着在电极上将二氧化碳还原为甲烷是一种很有前途的可再生能源储存策略。然而,产甲烷古菌在阴极上高效且特异性地电合成甲烷需要对微生物-电极界面的电子转移机制进行基础研究,而无需添加人工电子介体。本研究使用直接与气相色谱和扫描电子显微镜表面分析相结合的明确电化学技术,表明海洋自养产甲烷菌菌株 IM1 的纯培养物能够利用石墨阴极的电子,高度选择性地生产甲烷,而氢气不作为阴极产生的电子载体。在相对于 SHE 的-0.4V 设定电位下,通过菌株 IM1 的培养物进行微生物电合成甲烷,库仑效率为 80%,孵育 23 天后,速率达到 350 nmol d(-1) cm(-2)。此外,电位阶跃测量表明,在石墨上的非生物产氢电位更正处存在生物催化的氢气生成,这表明向菌株 IM1 过度供应电子会导致质子还原,而不是进一步增加甲烷生成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验