David Ariane, Demarre Gaëlle, Muresan Leila, Paly Evelyne, Barre François-Xavier, Possoz Christophe
CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Orsay, France.
PLoS Genet. 2014 Jul 10;10(7):e1004448. doi: 10.1371/journal.pgen.1004448. eCollection 2014 Jul.
The segregation of bacterial chromosomes follows a precise choreography of spatial organisation. It is initiated by the bipolar migration of the sister copies of the replication origin (ori). Most bacterial chromosomes contain a partition system (Par) with parS sites in close proximity to ori that contribute to the active mobilisation of the ori region towards the old pole. This is thought to result in a longitudinal chromosomal arrangement within the cell. In this study, we followed the duplication frequency and the cellular position of 19 Vibrio cholerae genome loci as a function of cell length. The genome of V. cholerae is divided between two chromosomes, chromosome I and II, which both contain a Par system. The ori region of chromosome I (oriI) is tethered to the old pole, whereas the ori region of chromosome II is found at midcell. Nevertheless, we found that both chromosomes adopted a longitudinal organisation. Chromosome I extended over the entire cell while chromosome II extended over the younger cell half. We further demonstrate that displacing parS sites away from the oriI region rotates the bulk of chromosome I. The only exception was the region where replication terminates, which still localised to the septum. However, the longitudinal arrangement of chromosome I persisted in Par mutants and, as was reported earlier, the ori region still localised towards the old pole. Finally, we show that the Par-independent longitudinal organisation and oriI polarity were perturbed by the introduction of a second origin. Taken together, these results suggest that the Par system is the major contributor to the longitudinal organisation of chromosome I but that the replication program also influences the arrangement of bacterial chromosomes.
细菌染色体的分离遵循精确的空间组织编排。它由复制起点(ori)的姐妹拷贝的双极迁移启动。大多数细菌染色体含有一个分区系统(Par),其parS位点紧邻ori,有助于ori区域向老极的主动移动。这被认为导致细胞内染色体的纵向排列。在本研究中,我们跟踪了19个霍乱弧菌基因组位点的复制频率和细胞位置随细胞长度的变化。霍乱弧菌的基因组分布在两条染色体上,即染色体I和染色体II,它们都含有一个Par系统。染色体I的ori区域(oriI)与老极相连,而染色体II的ori区域位于细胞中部。然而,我们发现两条染色体都呈现纵向组织。染色体I延伸至整个细胞,而染色体II延伸至较年轻的细胞半区。我们进一步证明,将parS位点从oriI区域移开可使染色体I的大部分发生旋转。唯一的例外是复制终止的区域,它仍定位于隔膜处。然而,染色体I的纵向排列在Par突变体中仍然存在,并且如先前报道的那样,ori区域仍定位于老极。最后,我们表明引入第二个起点会扰乱不依赖Par的纵向组织和oriI极性。综上所述,这些结果表明Par系统是染色体I纵向组织的主要贡献者,但复制程序也影响细菌染色体的排列。