Suppr超能文献

二分体基因组的细胞周期协调维持

Cell cycle-coordinated maintenance of the bipartite genome.

作者信息

Niault Théophile, Czarnecki Jakub, Lambérioux Morgan, Mazel Didier, Val Marie-Eve

机构信息

Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité , Paris, France.

Collège Doctoral, Sorbonne Université , Paris, France.

出版信息

EcoSal Plus. 2023 Dec 12;11(1):eesp00082022. doi: 10.1128/ecosalplus.esp-0008-2022. Epub 2023 Nov 22.

Abstract

To preserve the integrity of their genome, bacteria rely on several genome maintenance mechanisms that are co-ordinated with the cell cycle. All members of the family have a bipartite genome consisting of a primary chromosome (Chr1) homologous to the single chromosome of other bacteria such as and a secondary chromosome (Chr2) acquired by a common ancestor as a plasmid. In this review, we present our current understanding of genome maintenance in , which is the best-studied model for bacteria with multi-partite genomes. After a brief overview on the diversity of genomic architecture, we describe the specific, common, and co-ordinated mechanisms that control the replication and segregation of the two chromosomes of . Particular attention is given to the unique checkpoint mechanism that synchronizes Chr1 and Chr2 replication.

摘要

为了保持其基因组的完整性,细菌依赖于几种与细胞周期协调的基因组维护机制。该家族的所有成员都有一个二分基因组,由与其他细菌(如 )的单条染色体同源的主染色体(Chr1)和由共同祖先作为质粒获得的次染色体(Chr2)组成。在这篇综述中,我们阐述了目前对 基因组维护的理解, 是研究最深入的具有多部分基因组的细菌模型。在简要概述 基因组结构的多样性之后,我们描述了控制 两条染色体复制和分离的特定、共同和协调机制。特别关注同步Chr1和Chr2复制的独特检查点机制。

相似文献

1
Cell cycle-coordinated maintenance of the bipartite genome.
EcoSal Plus. 2023 Dec 12;11(1):eesp00082022. doi: 10.1128/ecosalplus.esp-0008-2022. Epub 2023 Nov 22.
2
Random versus Cell Cycle-Regulated Replication Initiation in Bacteria: Insights from Studying Vibrio cholerae Chromosome 2.
Microbiol Mol Biol Rev. 2016 Nov 30;81(1). doi: 10.1128/MMBR.00033-16. Print 2017 Mar.
5
A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae.
Sci Adv. 2016 Apr 22;2(4):e1501914. doi: 10.1126/sciadv.1501914. eCollection 2016 Apr.
9
Management of multipartite genomes: the Vibrio cholerae model.
Curr Opin Microbiol. 2014 Dec;22:120-6. doi: 10.1016/j.mib.2014.10.003.
10
Chromosome 1 licenses chromosome 2 replication in Vibrio cholerae by doubling the crtS gene dosage.
PLoS Genet. 2018 May 24;14(5):e1007426. doi: 10.1371/journal.pgen.1007426. eCollection 2018 May.

引用本文的文献

2
Frequent nonhomologous replacement of replicative helicase loaders by viruses in .
Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2317954121. doi: 10.1073/pnas.2317954121. Epub 2024 Apr 29.

本文引用的文献

1
Robust replication initiation from coupled homeostatic mechanisms.
Nat Commun. 2022 Nov 7;13(1):6556. doi: 10.1038/s41467-022-33886-6.
2
A dicentric bacterial chromosome requires XerC/D site-specific recombinases for resolution.
Curr Biol. 2022 Aug 22;32(16):3609-3618.e7. doi: 10.1016/j.cub.2022.06.050. Epub 2022 Jul 6.
3
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
4
Chromosome Partitioning without Polar Anchoring by HubP.
Genes (Basel). 2022 May 13;13(5):877. doi: 10.3390/genes13050877.
5
The apo-form of the Vibrio cholerae replicative helicase DnaB is a labile and inactive planar trimer of dimers.
FEBS Lett. 2022 Aug;596(16):2031-2040. doi: 10.1002/1873-3468.14403. Epub 2022 May 23.
7
Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae.
Nature. 2022 Apr;604(7905):323-329. doi: 10.1038/s41586-022-04546-y. Epub 2022 Apr 6.
8
Conformation and dynamic interactions of the multipartite genome in .
Proc Natl Acad Sci U S A. 2022 Feb 8;119(6). doi: 10.1073/pnas.2115854119.
10
Natural Chromosome-Chromid Fusion across rRNA Operons in a Bacterium.
Microbiol Spectr. 2022 Feb 23;10(1):e0222521. doi: 10.1128/spectrum.02225-21. Epub 2022 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验