Suppr超能文献

纳米硅阳极在循环过程中的失效机制:电极孔隙率演变模型。

Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model.

机构信息

French Commissary of Atomic and Alternative Energies (CEA), Laboratory of Innovation for New Energy Technologies and Nanomaterials (LITEN), 17 rue des martyrs, 38054 Grenoble, France.

出版信息

Phys Chem Chem Phys. 2014 Aug 28;16(32):17142-53. doi: 10.1039/c4cp02324b.

Abstract

With a specific capacity of 3600 mA h g(-1), silicon is a promising anode active material for Li-ion batteries (LIBs). However, because of the huge volume changes undergone by Si particles upon (de)alloying with lithium, Si electrodes suffer from rapid capacity fading. A deep understanding of the associated failure mechanisms is necessary to improve these electrochemical performances. To reach this goal, we investigate here nano-Si based electrodes by several characterization techniques. Thanks to all these techniques, many aspects, such as the behaviour of the active material or the solid electrolyte interphase (SEI) and the lithiation mechanisms, are studied upon cycling. A clear picture of the failure mechanisms of nano-Si based electrodes is provided. In particular, by combining Hg analyses, SEM observations of electrode cross-sections, and EIS measurements, we follow the evolution of the porosity within the electrode. For the first time, our results clearly show a real dynamic of the pore size distribution: the first cycles lead to the formation of a micrometric porosity which is not present initially. During the following cycles, these large pores are progressively filled up with SEI products which form continuously at the Si particle surface. Thus, from the 50th cycle, Li(+) ion diffusion is dramatically hindered leading to a strongly heterogeneous lithiation of the electrode and a rapid capacity fading.

摘要

具有 3600 mA h g(-1) 的比容量,硅是锂离子电池(LIBs)有前途的阳极活性材料。然而,由于硅颗粒与锂(脱)合金时体积变化巨大,硅电极会迅速衰减容量。为了改善这些电化学性能,有必要深入了解相关的失效机制。为了达到这个目标,我们在这里通过几种表征技术研究了纳米硅基电极。多亏了所有这些技术,我们研究了活性材料的行为、固体电解质界面(SEI)和锂化机制等多个方面在循环过程中的变化。纳米硅基电极的失效机制得到了清晰的描绘。特别是,通过结合汞分析、电极截面的 SEM 观察和 EIS 测量,我们跟踪了电极内孔隙率的演变。我们的结果首次清楚地显示了孔径分布的真实动态:前几个循环导致形成了最初不存在的微米级孔隙率。在随后的循环中,这些大孔逐渐被 SEI 产物填满,这些产物在硅颗粒表面不断形成。因此,从第 50 个循环开始,Li(+)离子扩散受到极大阻碍,导致电极的锂化严重不均匀,容量迅速衰减。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验