Suppr超能文献

用于锂离子电池的高容量纳米硅基电极的原位和在位原子力显微镜研究。

In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries.

机构信息

Battery and Electrochemistry Laboratory, Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

出版信息

Nanoscale. 2016 Aug 7;8(29):14048-56. doi: 10.1039/c6nr03575b. Epub 2016 May 25.

Abstract

Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle size as well as electrode structure and height are visualized with high resolution. Furthermore, the formation and evolution of the solid-electrolyte interphase (SEI) can be followed and its thickness determined by phase imaging and nano-indentation, respectively. Major changes occur in the first lithiation cycle at potentials below 0.6 V with respect to Li/Li(+) due to increased SEI formation - which is a dynamic process - and alloying reactions. Overall, these results provide insight into the function of silicon-based composite electrodes and further show that AFM is a powerful technique that can be applied to important battery materials, without restriction to thin film geometries.

摘要

硅是一种很有前途的下一代高能密度锂离子电池的阳极材料。虽然纳米和微米尺寸的硅与锂的合金化相对来说已经被很好地理解了,但是在实际的硅基电极中,在操作过程中机械退化和结构重排的知识是有限的。在这里,我们首次展示了含有聚合物粘合剂和炭黑添加剂的纳米硅阳极的原位和操作条件原子力显微镜(AFM)。有了这项技术的帮助,可以在电化学反应发生的同时分析表面形貌。特别是,可以以高分辨率可视化颗粒尺寸以及电极结构和高度的变化。此外,可以通过相成像和纳米压痕分别跟踪和确定固态电解质界面(SEI)的形成和演变及其厚度。由于 SEI 的形成——这是一个动态过程——和合金化反应,在相对于 Li/Li(+)的 0.6 V 以下的首次锂化循环中会发生主要变化。总的来说,这些结果提供了对硅基复合电极功能的深入了解,并进一步表明 AFM 是一种强大的技术,可以应用于重要的电池材料,而不受薄膜几何形状的限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验