University of Auckland, Auckland 1001, New Zealand.
Genetics. 2011 May;188(1):151-64. doi: 10.1534/genetics.110.125260. Epub 2011 Mar 8.
We provide a framework for Bayesian coalescent inference from microsatellite data that enables inference of population history parameters averaged over microsatellite mutation models. To achieve this we first implemented a rich family of microsatellite mutation models and related components in the software package BEAST. BEAST is a powerful tool that performs Bayesian MCMC analysis on molecular data to make coalescent and evolutionary inferences. Our implementation permits the application of existing nonparametric methods to microsatellite data. The implemented microsatellite models are based on the replication slippage mechanism and focus on three properties of microsatellite mutation: length dependency of mutation rate, mutational bias toward expansion or contraction, and number of repeat units changed in a single mutation event. We develop a new model that facilitates microsatellite model averaging and Bayesian model selection by transdimensional MCMC. With Bayesian model averaging, the posterior distributions of population history parameters are integrated across a set of microsatellite models and thus account for model uncertainty. Simulated data are used to evaluate our method in terms of accuracy and precision of estimation and also identification of the true mutation model. Finally we apply our method to a red colobus monkey data set as an example.
我们提供了一种基于贝叶斯合并推断的方法,可用于从微卫星数据中推断出平均化的群体历史参数,这些参数是基于微卫星突变模型得出的。为了实现这一目标,我们首先在 BEAST 软件包中实现了一系列丰富的微卫星突变模型和相关组件。BEAST 是一款强大的工具,可对分子数据进行贝叶斯 MCMC 分析,从而进行合并和进化推断。我们的实现允许将现有的非参数方法应用于微卫星数据。所实现的微卫星模型基于复制滑移机制,并侧重于微卫星突变的三个特性:突变率的长度依赖性、向扩张或收缩的突变偏向,以及在单个突变事件中改变的重复单元数量。我们开发了一种新的模型,通过跨维 MCMC 促进微卫星模型平均化和贝叶斯模型选择。通过贝叶斯模型平均化,群体历史参数的后验分布在一组微卫星模型之间进行积分,从而考虑到模型不确定性。我们使用模拟数据来评估我们的方法在估计准确性和精度方面的表现,以及识别真实的突变模型。最后,我们将我们的方法应用于红疣猴数据集作为一个例子。