Suppr超能文献

之字形碳化硅纳米带中热自旋电流的热自旋过滤、热自旋开关和负微分电阻

Thermal spin filtering, thermal spin switching and negative-differential-resistance in thermal spin currents in zigzag SiC nanoribbons.

作者信息

Wu Dan-Dan, Fu Hua-Hua, Gu Lei, Ni Yun, Zu Feng-Xia, Yao Kai-Lun

机构信息

College of Physics and Wuhan national high magnetic field center, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Phys Chem Chem Phys. 2014 Sep 7;16(33):17493-8. doi: 10.1039/c4cp01886a.

Abstract

Spin caloritronics with a combination of spintronics and thermoelectrics has potential applications in future information science and opens a new direction in the development of multi-functional materials. Based on density functional theory and the nonequilibrium Green's function method, we calculate thermal spin-dependent transport through a zigzag silicon carbide nanoribbon (ZSiCNR), which is a heterojunction consisting of a left electrode (ZSiC-2H1H) and right electrode terminated (ZSiC-1H1H) by hydrogen. Our results show that when the temperature in the left contact increases over a critical value, the thermal spin-down current increases remarkably from zero, while the thermal spin-up current remains zero in the total-temperature region, indicating that a perfect thermal spin filter together with a perfect spin switcher is obtained. Furthermore, the thermal spin current shows a negative differential resistance effect and quantum oscillation behaviors. These results suggest that the zigzag SiC nanoribbon proposed by us can be designed as a highly-efficient spin caloritronics device with multiple functionalities.

摘要

自旋电子学与热电子学相结合的自旋热电子学在未来信息科学中具有潜在应用,并为多功能材料的发展开辟了新方向。基于密度泛函理论和非平衡格林函数方法,我们计算了通过锯齿形碳化硅纳米带(ZSiCNR)的热自旋相关输运,该纳米带是由左侧电极(ZSiC - 2H1H)和右侧氢端接电极(ZSiC - 1H1H)组成的异质结。我们的结果表明,当左侧接触端的温度升高超过临界值时,热自旋向下电流从零显著增加,而热自旋向上电流在整个温度区域内保持为零,这表明获得了一个完美的热自旋滤波器和一个完美的自旋开关。此外,热自旋电流表现出负微分电阻效应和量子振荡行为。这些结果表明,我们提出的锯齿形碳化硅纳米带可被设计成具有多种功能的高效自旋热电子学器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验