Matière et Systèmes Complexes (MSC), Paris, France.
Phys Rev Lett. 2011 Oct 14;107(16):168304. doi: 10.1103/PhysRevLett.107.168304.
We propose an analytical model for the statistical mechanics of shuffled two-dimensional foams with moderate bubble size polydispersity. It predicts without any adjustable parameters the correlations between the number of sides n of the bubbles (topology) and their areas A (geometry) observed in experiments and numerical simulations of shuffled foams. Detailed statistics show that in shuffled cellular patterns n correlates better with √A (as claimed by Desch and Feltham) than with A (as claimed by Lewis and widely assumed in the literature). At the level of the whole foam, standard deviations Δn and ΔA are in proportion. Possible applications include correlations of the detailed distributions of n and A, three-dimensional foams, and biological tissues.
我们提出了一个分析模型,用于研究中等气泡大小多分散性的混排二维泡沫的统计力学。该模型无需任何可调参数,即可预测在混排泡沫的实验和数值模拟中观察到的气泡边数 n(拓扑结构)和面积 A(几何结构)之间的相关性。详细的统计数据表明,在混排多孔模式中,n 与 √A 的相关性更好(如 Desch 和 Feltham 所声称的),而不是与 A 的相关性(如 Lewis 所声称的,也是文献中广泛假设的)。在整个泡沫的水平上,标准偏差 Δn 和 ΔA 成比例。可能的应用包括 n 和 A 的详细分布的相关性、三维泡沫和生物组织。