Center for Nanoscale Science and Technology, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.
ACS Nano. 2014 Aug 26;8(8):8300-9. doi: 10.1021/nn502753x. Epub 2014 Jul 14.
We measure the microvortical flows around gold nanorods propelled by ultrasound in water using polystyrene nanoparticles as optical tracers. We infer the rotational frequencies of such nanomotors assuming a hydrodynamic model of this interaction. In this way, we find that nanomotors rotate around their longitudinal axes at frequencies of up to ≈ 2.5 kHz, or ≈ 150 000 rpm, in the planar pressure node of a half-wavelength layered acoustic resonator driven at ≈ 3 MHz with an acoustic energy density of <10 J·m(-3). The corresponding tangential speeds of up to ≈ 2.5 mm·s(-1) at a nanomotor radius of ≈ 160 nm are 2 orders of magnitude faster than the translational speeds of up to ≈ 20 μm·s(-1). We also find that rotation and translation are independent modes of motion within experimental uncertainty. Our study is an important step toward understanding the behavior and fulfilling the potential of this dynamic nanotechnology for hydrodynamically interacting with biological media, as well as other applications involving nanoscale transport, mixing, drilling, assembly, and rheology. Our results also establish the fastest reported rotation of a nanomotor in aqueous solution.
我们使用聚苯乙烯纳米颗粒作为光学示踪剂,测量了水中超声驱动的金纳米棒周围的微涡旋流。我们根据这种相互作用的流体动力学模型推断出纳米马达的旋转频率。通过这种方式,我们发现纳米马达在平面压力节点处以高达约 2.5 kHz(或约 150000 rpm)的频率绕其纵轴旋转,在 3 MHz 驱动的半波长层状声谐振器中,声能密度<10 J·m(-3)。在纳米马达半径约为 160 nm 的情况下,最大可达约 2.5 mm·s(-1)的切向速度比最大可达约 20 μm·s(-1)的平移速度快 2 个数量级。我们还发现,在实验不确定度范围内,旋转和平移是独立的运动模式。我们的研究是朝着理解这种动态纳米技术在与生物介质以及涉及纳米级传输、混合、钻孔、组装和流变学等其他应用的水力相互作用中的行为和发挥其潜力迈出的重要一步。我们的结果还确立了在水溶液中报道的最快的纳米马达旋转速度。