Departments of Physiology and.
Psychiatry, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
J Neurosci. 2014 Jul 16;34(29):9621-43. doi: 10.1523/JNEUROSCI.3991-13.2014.
Activation of presynaptic adenosine A1 receptors (A1Rs) causes substantial synaptic depression during hypoxia/cerebral ischemia, but postsynaptic actions of A1Rs are less clear. We found that A1Rs and GluA2-containing AMPA receptors (AMPARs) form stable protein complexes from hippocampal brain homogenates and cultured hippocampal neurons from Sprague Dawley rats. In contrast, adenosine A2A receptors (A2ARs) did not coprecipitate or colocalize with GluA2-containing AMPARs. Prolonged stimulation of A1Rs with the agonist N(6)-cyclopentyladenosine (CPA) caused adenosine-induced persistent synaptic depression (APSD) in hippocampal brain slices, and APSD levels were blunted by inhibiting clathrin-mediated endocytosis of GluA2 subunits with the Tat-GluA2-3Y peptide. Using biotinylation and membrane fractionation assays, prolonged CPA incubation showed significant depletion of GluA2/GluA1 surface expression from hippocampal brain slices and cultured neurons. Tat-GluA2-3Y peptide or dynamin inhibitor Dynasore prevented CPA-induced GluA2/GluA1 internalization. Confocal imaging analysis confirmed that functional A1Rs, but not A2ARs, are required for clathrin-mediated AMPAR endocytosis in hippocampal neurons. Pharmacological inhibitors or shRNA knockdown of p38 MAPK and JNK prevented A1R-mediated internalization of GluA2 but not GluA1 subunits. Tat-GluA2-3Y peptide or A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine also prevented hypoxia-mediated GluA2/GluA1 internalization. Finally, in a pial vessel disruption cortical stroke model, a unilateral cortical lesion compared with sham surgery reduced hippocampal GluA2, GluA1, and A1R surface expression and also caused synaptic depression in hippocampal slices that was consistent with AMPAR downregulation and decreased probability of transmitter release. Together, these results indicate a previously unknown mechanism for A1R-induced persistent synaptic depression involving clathrin-mediated GluA2 and GluA1 internalization that leads to hippocampal neurodegeneration after hypoxia/cerebral ischemia.
激活突触前腺苷 A1 受体 (A1R) 在缺氧/脑缺血期间会导致大量的突触抑制,但 A1R 的突触后作用尚不清楚。我们发现,A1R 和含有 GluA2 的 AMPA 受体 (AMPAR) 可从海马脑匀浆和 Sprague Dawley 大鼠培养的海马神经元中形成稳定的蛋白复合物。相比之下,腺苷 A2A 受体 (A2AR) 不会与含有 GluA2 的 AMPAR 共沉淀或共定位。用激动剂 N(6)-环戊基腺苷 (CPA) 长时间刺激 A1R 会导致海马脑切片中的腺苷诱导的持续突触抑制 (APSD),而用 Tat-GluA2-3Y 肽抑制网格蛋白介导的 GluA2 亚基内吞作用会使 APSD 水平降低。通过生物素化和膜分离测定,发现长时间的 CPA 孵育会导致海马脑切片和培养神经元中 GluA2/GluA1 表面表达显著减少。Tat-GluA2-3Y 肽或 dynamin 抑制剂 Dynasore 可阻止 CPA 诱导的 GluA2/GluA1 内化。共聚焦成像分析证实,功能性 A1R 而不是 A2AR 对于海马神经元中网格蛋白介导的 AMPAR 内吞作用是必需的。p38 MAPK 和 JNK 的药理学抑制剂或 shRNA 敲低可阻止 A1R 介导的 GluA2 但不是 GluA1 亚基的内化。Tat-GluA2-3Y 肽或 A1R 拮抗剂 8-环戊基-1,3-二丙基黄嘌呤也可阻止缺氧介导的 GluA2/GluA1 内化。最后,在血管破坏性大脑中动脉阻塞皮质卒中模型中,与假手术相比,单侧皮质损伤会降低海马 GluA2、GluA1 和 A1R 表面表达,并导致海马切片中的突触抑制,这与 AMPAR 下调和递质释放概率降低一致。总之,这些结果表明,A1R 诱导的持续突触抑制涉及网格蛋白介导的 GluA2 和 GluA1 内化,这是缺氧/脑缺血后海马神经退行性变的一个以前未知的机制。