AMPA 受体亚基 GluR1 (GluA1) 的丝氨酸-845 位点参与突触抑制,但不参与与化学性长时程抑制相关的棘突缩小。
AMPA receptor subunit GluR1 (GluA1) serine-845 site is involved in synaptic depression but not in spine shrinkage associated with chemical long-term depression.
机构信息
Department of Biology, University of Maryland, College Park, MD 20742, USA.
出版信息
J Neurophysiol. 2011 Apr;105(4):1897-907. doi: 10.1152/jn.00913.2010. Epub 2011 Feb 9.
The structure of dendritic spines is highly plastic and can be modified by neuronal activity. In addition, there is evidence that spine head size correlates with the synaptic α-amino-3-hydroxy-5-methylisoxazole propionic acid (AMPA) receptor (AMPAR) content, which suggests that they may be coregulated. Although there is evidence that there are overlapping mechanisms for structural and functional plasticity, the extent of the overlap needs further investigation. Specifically, it is unknown whether AMPAR levels determine spine size or whether both are regulated via parallel pathways. We studied the correlation between spine structural plasticity and long-term synaptic plasticity following chemical-induced long-term depression (chemLTD). In particular, we examined whether the regulation of AMPARs, which is implicated in LTD, is critical for spine morphological plasticity. We used mutant mice specifically lacking the serine-845 site on the type 1 glutamate receptor (GluR1, or GluA1) subunit of AMPARs (mutants). These mice specifically lack N-methyl-D-aspartate (NMDA) receptor (NMDAR)-dependent LTD and NMDAR activation-induced AMPAR endocytosis. We found that chemLTD causes a rapid and persistent shrinkage in spine head volume of hippocampal CA1 pyramidal neurons in wild types similar to that reported in other studies using low-frequency stimulation (LFS)-induced LTD. Surprisingly, we found that although S845A mutant mice display impaired chemLTD, the shrinkage of spine head volume occurred to a similar magnitude to that observed in wild types. Our results suggest that there is dissociation in the molecular mechanisms underlying functional LTD and spine shrinkage and that GluR1-S845 regulation is not necessary for spine morphological plasticity.
树突棘的结构具有高度的可塑性,可以通过神经元活动进行修饰。此外,有证据表明,棘头大小与突触 α-氨基-3-羟基-5-甲基异恶唑丙酸 (AMPA) 受体 (AMPAR) 含量相关,这表明它们可能是共同调节的。尽管有证据表明结构和功能可塑性存在重叠机制,但重叠的程度需要进一步研究。具体来说,尚不清楚 AMPAR 水平是否决定了棘头的大小,或者两者是否通过平行途径进行调节。我们研究了化学诱导的长时程抑制(chemLTD)后棘突结构可塑性和长时程突触可塑性之间的相关性。特别是,我们研究了 AMPAR 调节是否对棘突形态可塑性至关重要,因为 AMPAR 调节与 LTD 有关。我们使用专门缺乏 AMPAR 上的 1 型谷氨酸受体(GluR1,或 GluA1)亚基的丝氨酸-845 位点的突变小鼠(突变体)。这些突变体特异性缺乏 N-甲基-D-天冬氨酸(NMDA)受体(NMDAR)依赖性 LTD 和 NMDAR 激活诱导的 AMPAR 内吞作用。我们发现 chemLTD 导致野生型海马 CA1 锥体神经元棘头体积快速而持久地收缩,类似于其他使用低频刺激(LFS)诱导的 LTD 的研究报告。令人惊讶的是,我们发现尽管 S845A 突变体小鼠显示出 chemLTD 受损,但棘头体积的收缩幅度与野生型相似。我们的结果表明,功能 LTD 和棘突收缩的分子机制存在分离,并且 GluR1-S845 调节对于棘突形态可塑性不是必需的。