Suppr超能文献

实验小鼠的可变形图谱。

A deformable atlas of the laboratory mouse.

作者信息

Wang Hongkai, Stout David B, Chatziioannou Arion F

机构信息

Crump Institute of Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, USA,

出版信息

Mol Imaging Biol. 2015 Feb;17(1):18-28. doi: 10.1007/s11307-014-0767-7.

Abstract

PURPOSE

This paper presents a deformable mouse atlas of the laboratory mouse anatomy. This atlas is fully articulated and can be positioned into arbitrary body poses. The atlas can also adapt body weight by changing body length and fat amount.

PROCEDURES

A training set of 103 micro-CT images was used to construct the atlas. A cage-based deformation method was applied to realize the articulated pose change. The weight-related body deformation was learned from the training set using a linear regression method. A conditional Gaussian model and thin-plate spline mapping were used to deform the internal organs following the changes of pose and weight.

RESULTS

The atlas was deformed into different body poses and weights, and the deformation results were more realistic compared to the results achieved with other mouse atlases. The organ weights of this atlas matched well with the measurements of real mouse organ weights. This atlas can also be converted into voxelized images with labeled organs, pseudo CT images and tetrahedral mesh for phantom studies.

CONCLUSIONS

With the unique ability of articulated pose and weight changes, the deformable laboratory mouse atlas can become a valuable tool for preclinical image analysis.

摘要

目的

本文展示了一个实验室小鼠解剖结构的可变形图谱。该图谱是完全可铰接的,能够定位到任意身体姿势。该图谱还可以通过改变身体长度和脂肪量来适应体重。

程序

使用一组包含103张微型计算机断层扫描(micro-CT)图像的训练集来构建该图谱。应用基于笼子的变形方法来实现关节姿势的改变。使用线性回归方法从训练集中学习与体重相关的身体变形。使用条件高斯模型和薄板样条映射来使内部器官随姿势和体重的变化而变形。

结果

该图谱被变形为不同的身体姿势和体重,与其他小鼠图谱所得到的结果相比,变形结果更逼真。该图谱的器官重量与真实小鼠器官重量的测量结果匹配良好。该图谱还可以转换为带有标记器官的体素化图像、伪CT图像和用于体模研究的四面体网格。

结论

凭借其独特的关节姿势和体重变化能力,可变形的实验室小鼠图谱可以成为临床前图像分析的宝贵工具。

相似文献

1
A deformable atlas of the laboratory mouse.
Mol Imaging Biol. 2015 Feb;17(1):18-28. doi: 10.1007/s11307-014-0767-7.
2
Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images.
IEEE Trans Med Imaging. 2012 Jan;31(1):88-102. doi: 10.1109/TMI.2011.2165294. Epub 2011 Aug 18.
3
Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data.
Med Image Anal. 2010 Dec;14(6):723-37. doi: 10.1016/j.media.2010.04.008. Epub 2010 May 21.
4
MARS: a mouse atlas registration system based on a planar x-ray projector and an optical camera.
Phys Med Biol. 2012 Oct 7;57(19):6063-77. doi: 10.1088/0031-9155/57/19/6063. Epub 2012 Sep 12.
5
Accuracy of finite element model-based multi-organ deformable image registration.
Med Phys. 2005 Jun;32(6):1647-59. doi: 10.1118/1.1915012.
6
Robust deformable image registration using prior shape information for atlas to patient registration.
Comput Med Imaging Graph. 2010 Jan;34(1):79-90. doi: 10.1016/j.compmedimag.2009.05.003. Epub 2009 Jun 9.
9
Automated analysis of small animal PET studies through deformable registration to an atlas.
Eur J Nucl Med Mol Imaging. 2012 Nov;39(11):1807-20. doi: 10.1007/s00259-012-2188-7. Epub 2012 Jul 21.
10
DigiWarp: a method for deformable mouse atlas warping to surface topographic data.
Phys Med Biol. 2010 Oct 21;55(20):6197-214. doi: 10.1088/0031-9155/55/20/011. Epub 2010 Sep 30.

引用本文的文献

1
Learning a stable approximation of an existing but unknown inverse mapping: application to the half-time circular Radon transform.
Inverse Probl. 2024 Aug 1;40(8):085002. doi: 10.1088/1361-6420/ad4f0a. Epub 2024 Jun 25.
2
Bioluminescence tomography reconstruction in conjunction with an organ probability map as an anatomical reference.
Biomed Opt Express. 2022 Feb 7;13(3):1275-1291. doi: 10.1364/BOE.448862. eCollection 2022 Mar 1.
3
Deep learning-based segmentation of the thorax in mouse micro-CT scans.
Sci Rep. 2022 Feb 2;12(1):1822. doi: 10.1038/s41598-022-05868-7.
5
Bioluminescence tomography with structural information estimated via statistical mouse atlas registration.
Biomed Opt Express. 2018 Jul 5;9(8):3544-3558. doi: 10.1364/BOE.9.003544. eCollection 2018 Aug 1.
6
Automated quantification of bioluminescence images.
Nat Commun. 2018 Oct 15;9(1):4262. doi: 10.1038/s41467-018-06288-w.
7
Deformable torso phantoms of Chinese adults for personalized anatomy modelling.
J Anat. 2018 Jul;233(1):121-134. doi: 10.1111/joa.12815. Epub 2018 Apr 16.
8
Metabolic profiling of follistatin overexpression: a novel therapeutic strategy for metabolic diseases.
Diabetes Metab Syndr Obes. 2018 Mar 26;11:65-84. doi: 10.2147/DMSO.S159315. eCollection 2018.
9
Estimation of subject coregistration errors during multimodal preclinical imaging using separate instruments: origins and avoidance of artifacts.
J Med Imaging (Bellingham). 2017 Jul;4(3):035503. doi: 10.1117/1.JMI.4.3.035503. Epub 2017 Aug 22.
10
Noninvasive Assessment of Elimination and Retention using CT-FMT and Kinetic Whole-body Modeling.
Theranostics. 2017 Apr 5;7(6):1499-1510. doi: 10.7150/thno.17263. eCollection 2017.

本文引用的文献

1
EMAGE: Electronic Mouse Atlas of Gene Expression.
Methods Mol Biol. 2014;1092:61-79. doi: 10.1007/978-1-60327-292-6_5.
2
CT-based handling and analysis of preclinical multimodality imaging data of bone metastases.
Bonekey Rep. 2012 May 9;1:79. doi: 10.1038/bonekey.2012.79. eCollection 2012.
3
NEMA NU-4 performance evaluation of PETbox4, a high sensitivity dedicated PET preclinical tomograph.
Phys Med Biol. 2013 Jun 7;58(11):3791-814. doi: 10.1088/0031-9155/58/11/3791. Epub 2013 May 10.
4
Molecular Optical Simulation Environment (MOSE): a platform for the simulation of light propagation in turbid media.
PLoS One. 2013;8(4):e61304. doi: 10.1371/journal.pone.0061304. Epub 2013 Apr 8.
5
A method of 2D/3D registration of a statistical mouse atlas with a planar X-ray projection and an optical photo.
Med Image Anal. 2013 May;17(4):401-16. doi: 10.1016/j.media.2013.02.009. Epub 2013 Mar 5.
6
Monte Carlo-based evaluation of S-values in mouse models for positron-emitting radionuclides.
Phys Med Biol. 2013 Jan 7;58(1):169-82. doi: 10.1088/0031-9155/58/1/169. Epub 2012 Dec 10.
7
Segmentation and visual analysis of whole-body mouse skeleton microSPECT.
PLoS One. 2012;7(11):e48976. doi: 10.1371/journal.pone.0048976. Epub 2012 Nov 12.
8
MARS: a mouse atlas registration system based on a planar x-ray projector and an optical camera.
Phys Med Biol. 2012 Oct 7;57(19):6063-77. doi: 10.1088/0031-9155/57/19/6063. Epub 2012 Sep 12.
9
A novel 3D mouse embryo atlas based on micro-CT.
Development. 2012 Sep;139(17):3248-56. doi: 10.1242/dev.082016.
10
Quantitative mouse brain phenotyping based on single and multispectral MR protocols.
Neuroimage. 2012 Nov 15;63(3):1633-45. doi: 10.1016/j.neuroimage.2012.07.021. Epub 2012 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验