Suppr超能文献

使用单独仪器进行多模态临床前成像期间受试者配准误差的估计:伪影的来源及避免方法

Estimation of subject coregistration errors during multimodal preclinical imaging using separate instruments: origins and avoidance of artifacts.

作者信息

Dillenseger Jean-Philippe, Goetz Christian, Sayeh Amira, Healy Chris, Duluc Isabelle, Freund Jean-Noël, Constantinesco André, Aubertin-Kirch Gaëlle, Choquet Philippe

机构信息

Hôpitaux Universitaires de Strasbourg, Imagerie Préclinique-UF6237, Pôle d'imagerie, Hôpital de Hautepierre, Strasbourg Cedex, France.

Université de Strasbourg, Icube, équipe MMB, CNRS, Strasbourg, France.

出版信息

J Med Imaging (Bellingham). 2017 Jul;4(3):035503. doi: 10.1117/1.JMI.4.3.035503. Epub 2017 Aug 22.

Abstract

We use high-resolution [Formula: see text] data in multiple experiments to estimate the sources of error during coregistration of images acquired on separate preclinical instruments. In combination with experiments with phantoms, we completed imaging on mice, aimed at identifying the possible sources of registration errors, caused either by transport of the animal, movement of the animal itself, or methods of coregistration. The same imaging cell was used as a holder for phantoms and animals. For all procedures, rigid coregistration was carried out using a common landmark coregistration system, placed inside the imaging cell. We used the fiducial registration error and the target registration error to analyze the coregistration accuracy. We found that moving an imaging cell between two preclinical devices during a multimodal procedure gives an error of about [Formula: see text] at most. Therefore, it could not be considered a source of coregistration errors. Errors linked to spontaneous movements of the animal increased with time, to nearly 1 mm at most, excepted for body parts that were properly restrained. This work highlights the importance of animal intrinsic movements during a multiacquisition procedure and demonstrates a simple method to identify and quantify the sources of error during coregistration.

摘要

我们在多个实验中使用高分辨率[公式:见正文]数据,以估计在不同临床前仪器上采集的图像配准过程中的误差来源。结合体模实验,我们对小鼠进行了成像,旨在识别由动物运输、动物自身运动或配准方法引起的配准误差的可能来源。同一成像单元用作体模和动物的固定装置。对于所有程序,使用放置在成像单元内的通用地标配准系统进行刚性配准。我们使用基准配准误差和目标配准误差来分析配准精度。我们发现,在多模态程序中,在两个临床前设备之间移动成像单元最多会产生约[公式:见正文]的误差。因此,它不能被视为配准误差的来源。与动物自发运动相关的误差随时间增加,最多接近1毫米,但适当约束的身体部位除外。这项工作强调了在多次采集过程中动物固有运动的重要性,并展示了一种识别和量化配准过程中误差来源的简单方法。

相似文献

3
Framework for lumen-based nonrigid tomographic coregistration of intravascular images.基于管腔的血管内图像非刚性断层配准框架。
J Med Imaging (Bellingham). 2022 Jul;9(4):044006. doi: 10.1117/1.JMI.9.4.044006. Epub 2022 Aug 25.
6
Estimating FLEimage distributions of manual fiducial localization in CT images.估计CT图像中手动基准定位的FLE图像分布。
Int J Comput Assist Radiol Surg. 2016 Jun;11(6):1043-9. doi: 10.1007/s11548-016-1389-0. Epub 2016 Mar 30.

本文引用的文献

1
Preclinical Multimodality Imaging in Vivo.体内临床前多模态成像
PET Clin. 2008 Jul;3(3):251-73. doi: 10.1016/j.cpet.2009.03.001. Epub 2009 Jun 21.
2
A deformable atlas of the laboratory mouse.实验小鼠的可变形图谱。
Mol Imaging Biol. 2015 Feb;17(1):18-28. doi: 10.1007/s11307-014-0767-7.
5
Performance evaluation of the eXplore speCZT preclinical imaging system.eXplore speCZT临床前成像系统的性能评估。
Ann Nucl Med. 2014 Jun;28(5):484-97. doi: 10.1007/s12149-014-0828-7. Epub 2014 Mar 8.
7
Applications for preclinical PET/MRI.临床前 PET/MRI 的应用。
Semin Nucl Med. 2013 Jan;43(1):19-29. doi: 10.1053/j.semnuclmed.2012.08.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验