Suppr超能文献

诱导干细胞用于骨骼肌修复。

Coaxing stem cells for skeletal muscle repair.

作者信息

McCullagh Karl J A, Perlingeiro Rita C R

机构信息

Department of Physiology, School of Medicine and Regenerative Medicine Institute, National University of Ireland Galway, Ireland.

Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.

出版信息

Adv Drug Deliv Rev. 2015 Apr;84:198-207. doi: 10.1016/j.addr.2014.07.007. Epub 2014 Jul 15.

Abstract

Skeletal muscle has a tremendous ability to regenerate, attributed to a well-defined population of muscle stem cells called satellite cells. However, this ability to regenerate diminishes with age and can also be dramatically affected by multiple types of muscle diseases, or injury. Extrinsic and/or intrinsic defects in the regulation of satellite cells are considered to be major determinants for the diminished regenerative capacity. Maintenance and replenishment of the satellite cell pool is one focus for muscle regenerative medicine, which will be discussed. There are other sources of progenitor cells with myogenic capacity, which may also support skeletal muscle repair. However, all of these myogenic cell populations have inherent difficulties and challenges in maintaining or coaxing their derivation for therapeutic purpose. This review will highlight recent reported attributes of these cells and new bioengineering approaches to creating a supply of myogenic stem cells or implants applicable for acute and/or chronic muscle disorders.

摘要

骨骼肌具有强大的再生能力,这归因于一群明确的肌肉干细胞,即卫星细胞。然而,这种再生能力会随着年龄的增长而减弱,并且还会受到多种类型的肌肉疾病或损伤的显著影响。卫星细胞调节中的外在和/或内在缺陷被认为是再生能力下降的主要决定因素。卫星细胞池的维持和补充是肌肉再生医学的一个重点,将对此进行讨论。还有其他具有成肌能力的祖细胞来源,它们也可能支持骨骼肌修复。然而,所有这些成肌细胞群体在维持或诱导其用于治疗目的的衍生方面都存在固有的困难和挑战。本综述将重点介绍这些细胞最近报道的特性以及新的生物工程方法,以创建适用于急性和/或慢性肌肉疾病的成肌干细胞供应或植入物。

相似文献

1
Coaxing stem cells for skeletal muscle repair.
Adv Drug Deliv Rev. 2015 Apr;84:198-207. doi: 10.1016/j.addr.2014.07.007. Epub 2014 Jul 15.
2
Activating muscle stem cells: therapeutic potential in muscle diseases.
Curr Opin Neurol. 2007 Oct;20(5):577-82. doi: 10.1097/WCO.0b013e3282ef5919.
3
Isolation, culture, and transplantation of muscle satellite cells.
J Vis Exp. 2014 Apr 8(86):50846. doi: 10.3791/50846.
4
Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells.
Nat Cell Biol. 2007 Mar;9(3):255-67. doi: 10.1038/ncb1542. Epub 2007 Feb 11.
5
Mural cells paint a new picture of muscle stem cells.
Nat Cell Biol. 2007 Mar;9(3):249-51. doi: 10.1038/ncb0307-249.
7
The origin, molecular regulation and therapeutic potential of myogenic stem cell populations.
J Anat. 2009 Nov;215(5):477-97. doi: 10.1111/j.1469-7580.2009.01138.x. Epub 2009 Aug 24.
8
Cellular Biomechanics in Skeletal Muscle Regeneration.
Curr Top Dev Biol. 2018;126:125-176. doi: 10.1016/bs.ctdb.2017.08.007. Epub 2017 Oct 31.
9
Satellite cells: the architects of skeletal muscle.
Curr Top Dev Biol. 2014;107:161-81. doi: 10.1016/B978-0-12-416022-4.00006-8.
10

引用本文的文献

1
Porous biomaterial scaffolds for skeletal muscle tissue engineering.
Front Bioeng Biotechnol. 2023 Oct 3;11:1245897. doi: 10.3389/fbioe.2023.1245897. eCollection 2023.
3
Organotypic cultures as aging associated disease models.
Aging (Albany NY). 2022 Nov 22;14(22):9338-9383. doi: 10.18632/aging.204361.
4
Bioinks and Bioprinting Strategies for Skeletal Muscle Tissue Engineering.
Adv Mater. 2022 Mar;34(12):e2105883. doi: 10.1002/adma.202105883. Epub 2022 Feb 3.
5
Current Strategies for the Regeneration of Skeletal Muscle Tissue.
Int J Mol Sci. 2021 May 31;22(11):5929. doi: 10.3390/ijms22115929.
6
Characterisation of stemness and multipotency of ovine muscle-derived stem cells from various muscle sources.
J Anat. 2021 Aug;239(2):336-350. doi: 10.1111/joa.13420. Epub 2021 Feb 27.
7
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss.
Bioengineering (Basel). 2020 Jul 31;7(3):85. doi: 10.3390/bioengineering7030085.
8
Can Dynamic Contrast-Enhanced CT Quantify Perfusion in a Stimulated Muscle of Limited Size? A Rat Model.
Clin Orthop Relat Res. 2020 Jan;478(1):179-188. doi: 10.1097/CORR.0000000000001045.
10
Vascularized and Innervated Skeletal Muscle Tissue Engineering.
Adv Healthc Mater. 2020 Jan;9(1):e1900626. doi: 10.1002/adhm.201900626. Epub 2019 Oct 17.

本文引用的文献

1
Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle.
Science. 2014 May 9;344(6184):649-52. doi: 10.1126/science.1251152. Epub 2014 May 5.
2
Molecular and cell-based therapies for muscle degenerations: a road under construction.
Front Physiol. 2014 Apr 8;5:119. doi: 10.3389/fphys.2014.00119. eCollection 2014.
3
FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal.
Stem Cell Reports. 2014 Mar 20;2(4):414-26. doi: 10.1016/j.stemcr.2014.02.002. eCollection 2014 Apr 8.
4
Dystrophic muscle environment induces changes in cell plasticity.
Genes Dev. 2014 Apr 15;28(8):809-11. doi: 10.1101/gad.241182.114.
5
Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5508-13. doi: 10.1073/pnas.1402723111. Epub 2014 Mar 31.
7
Extrinsic Regulation of Satellite Cell Function and Muscle Regeneration Capacity during Aging.
J Stem Cell Res Ther. 2012 Sep 26;Suppl 11:001. doi: 10.4172/2157-7633.S11-001.
8
Derivation of myogenic progenitors directly from human pluripotent stem cells using a sphere-based culture.
Stem Cells Transl Med. 2014 May;3(5):564-74. doi: 10.5966/sctm.2013-0143. Epub 2014 Mar 21.
9
Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle.
Front Physiol. 2014 Feb 24;5:68. doi: 10.3389/fphys.2014.00068. eCollection 2014.
10
Full-length dystrophin reconstitution with adeno-associated viral vectors.
Hum Gene Ther. 2014 Jun;25(6):552-62. doi: 10.1089/hum.2013.210. Epub 2014 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验