Suppr超能文献

用于骨骼肌组织工程的生物墨水和生物打印策略。

Bioinks and Bioprinting Strategies for Skeletal Muscle Tissue Engineering.

机构信息

Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA.

Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA.

出版信息

Adv Mater. 2022 Mar;34(12):e2105883. doi: 10.1002/adma.202105883. Epub 2022 Feb 3.

Abstract

Skeletal muscles play important roles in critical body functions and their injury or disease can lead to limitation of mobility and loss of independence. Current treatments result in variable functional recovery, while reconstructive surgery, as the gold-standard approach, is limited due to donor shortage, donor-site morbidity, and limited functional recovery. Skeletal muscle tissue engineering (SMTE) has generated enthusiasm as an alternative solution for treatment of injured tissue and serves as a functional disease model. Recently, bioprinting has emerged as a promising tool for recapitulating the complex and highly organized architecture of skeletal muscles at clinically relevant sizes. Here, skeletal muscle physiology, muscle regeneration following injury, and current treatments following muscle loss are discussed, and then bioprinting strategies implemented for SMTE are critically reviewed. Subsequently, recent advancements that have led to improvement of bioprinting strategies to construct large muscle structures, boost myogenesis in vitro and in vivo, and enhance tissue integration are discussed. Bioinks for muscle bioprinting, as an essential part of any bioprinting strategy, are discussed, and their benefits, limitations, and areas to be improved are highlighted. Finally, the directions the field should expand to make bioprinting strategies more translational and overcome the clinical unmet needs are discussed.

摘要

骨骼肌在重要的身体功能中发挥着重要作用,其损伤或疾病可导致运动能力受限和丧失独立性。目前的治疗方法导致功能恢复程度不一,而作为金标准方法的重建手术因供体短缺、供体部位发病率和功能恢复有限而受到限制。骨骼肌组织工程(SMTE)作为治疗受损组织的替代方案引起了人们的兴趣,并可作为功能障碍疾病模型。最近,生物打印技术作为一种有前途的工具,已被用于重现骨骼肌在临床相关大小下的复杂和高度组织化结构。本文讨论了骨骼肌生理学、损伤后的肌肉再生以及肌肉丧失后的当前治疗方法,然后对用于 SMTE 的生物打印策略进行了批判性回顾。随后,讨论了最近的进展,这些进展使得生物打印策略在构建大肌肉结构、促进体外和体内成肌、增强组织整合方面得到了改进。生物墨水是任何生物打印策略的重要组成部分,讨论了它们的优点、局限性和需要改进的领域。最后,讨论了该领域应该扩展的方向,以使生物打印策略更具转化性并克服临床未满足的需求。

相似文献

1
Bioinks and Bioprinting Strategies for Skeletal Muscle Tissue Engineering.
Adv Mater. 2022 Mar;34(12):e2105883. doi: 10.1002/adma.202105883. Epub 2022 Feb 3.
2
3D Bioprinting in Skeletal Muscle Tissue Engineering.
Small. 2019 Jun;15(24):e1805530. doi: 10.1002/smll.201805530. Epub 2019 Apr 23.
3
Recent trends in 3D bioprinting technology for skeletal muscle regeneration.
Acta Biomater. 2024 Jun;181:46-66. doi: 10.1016/j.actbio.2024.04.038. Epub 2024 Apr 30.
4
Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds.
Tissue Eng Part A. 2020 Mar;26(5-6):318-338. doi: 10.1089/ten.TEA.2019.0298.
5
Advances in electrospinning and 3D bioprinting strategies to enhance functional regeneration of skeletal muscle tissue.
Biomater Adv. 2022 Nov;142:213135. doi: 10.1016/j.bioadv.2022.213135. Epub 2022 Sep 29.
6
Biobridge: An Outlook on Translational Bioinks for 3D Bioprinting.
Adv Sci (Weinh). 2022 Jan;9(3):e2103469. doi: 10.1002/advs.202103469. Epub 2021 Dec 3.
7
Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting.
Molecules. 2016 May 25;21(6):685. doi: 10.3390/molecules21060685.
8
Engineering bioinks for 3D bioprinting.
Biofabrication. 2021 Apr 8;13(3). doi: 10.1088/1758-5090/abec2c.
10
Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation.
J Tissue Eng Regen Med. 2022 May;16(5):484-495. doi: 10.1002/term.3293. Epub 2022 Mar 4.

引用本文的文献

1
Advanced cell-adaptable hydrogels for bioprinting.
Bioact Mater. 2025 Aug 6;53:831-854. doi: 10.1016/j.bioactmat.2025.07.044. eCollection 2025 Nov.
2
Cell and tissue reprogramming: Unlocking a new era in medical drug discovery.
Pharmacol Rev. 2025 Jun 26;77(5):100077. doi: 10.1016/j.pharmr.2025.100077.
3
A Self-Renewing Biomimetic Skeletal Muscle Construct Engineered using Induced Myogenic Progenitor Cells.
Adv Funct Mater. 2023 Sep 27;34(1). doi: 10.1002/adfm.202300571. eCollection 2024 Jan.
5
Skeletal Muscle Tissue Engineering: From Tissue Regeneration to Biorobotics.
Cyborg Bionic Syst. 2025 May 15;6:0279. doi: 10.34133/cbsystems.0279. eCollection 2025.
6
Biodegradable Oxygen-Generating Microneedle Patches for Regenerative Medicine Applications.
Adv Nanobiomed Res. 2025 Jan;5(1):2400093. doi: 10.1002/anbr.202400093. Epub 2024 Nov 27.
7
Extracellular Matrix-Mediated Crosslinking of Adhesive Hyaluronic Acid Patch for Treating Volumetric Muscle Injury.
Adv Healthc Mater. 2025 May;14(14):e2403747. doi: 10.1002/adhm.202403747. Epub 2025 Apr 24.
9
Bioactive Inorganic Materials for Innervated Multi-Tissue Regeneration.
Adv Sci (Weinh). 2025 Apr;12(13):e2415344. doi: 10.1002/advs.202415344. Epub 2025 Feb 27.
10
Bioprinting Perfusable and Vascularized Skeletal Muscle Flaps for the Treatment of Volumetric Muscle Loss.
Adv Healthc Mater. 2025 May;14(13):e2404542. doi: 10.1002/adhm.202404542. Epub 2025 Jan 31.

本文引用的文献

1
Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries.
ACS Appl Bio Mater. 2020 Mar 16;3(3):1568-1579. doi: 10.1021/acsabm.9b01176. Epub 2020 Feb 24.
2
printing of growth factor-eluting adhesive scaffolds improves wound healing.
Bioact Mater. 2021 Jul 5;8:296-308. doi: 10.1016/j.bioactmat.2021.06.030. eCollection 2022 Feb.
4
3D in vitro models of skeletal muscle: myopshere, myobundle and bioprinted muscle construct.
Vet Res. 2021 May 19;52(1):72. doi: 10.1186/s13567-021-00942-w.
5
Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress.
Int J Bioprint. 2021 Apr 20;7(2):333. doi: 10.18063/ijb.v7i2.337. eCollection 2021.
6
Three-dimensional tissue-engineered human skeletal muscle model of Pompe disease.
Commun Biol. 2021 May 5;4(1):524. doi: 10.1038/s42003-021-02059-4.
7
Human muscle production in vitro from pluripotent stem cells: Basic and clinical applications.
Semin Cell Dev Biol. 2021 Nov;119:39-48. doi: 10.1016/j.semcdb.2021.04.017. Epub 2021 Apr 30.
8
Fit-For-All iPSC-Derived Cell Therapies and Their Evaluation in Humanized Mice With NK Cell Immunity.
Front Immunol. 2021 Apr 2;12:662360. doi: 10.3389/fimmu.2021.662360. eCollection 2021.
9
In situ printing of scaffolds for reconstruction of bone defects.
Acta Biomater. 2021 Jun;127:313-326. doi: 10.1016/j.actbio.2021.03.009. Epub 2021 Mar 8.
10
In Vivo Printing of Nanoenabled Scaffolds for the Treatment of Skeletal Muscle Injuries.
Adv Healthc Mater. 2021 May;10(10):e2002152. doi: 10.1002/adhm.202002152. Epub 2021 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验