用于深入分析大型稳定同位素标记氨基酸定量(SILAC)数据集的MaxQuant软件

MaxQuant for in-depth analysis of large SILAC datasets.

作者信息

Tyanova Stefka, Mann Matthias, Cox Jürgen

机构信息

Department for Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.

出版信息

Methods Mol Biol. 2014;1188:351-64. doi: 10.1007/978-1-4939-1142-4_24.

Abstract

Proteomics experiments can generate very large volumes of data, in particular in situations where within one experimental design many samples are compared to each other, possibly in combination with pre-fractionation of samples prior to LC-MS analysis. Here we provide a step-by-step protocol explaining how the current MaxQuant version can be used to analyze large SILAC-labeling datasets in an efficient way.

摘要

蛋白质组学实验会产生大量数据,特别是在这样的情况下:在一个实验设计中,许多样本相互比较,并且可能在液相色谱-质谱联用(LC-MS)分析之前对样本进行预分级分离。在此,我们提供一份详细的方案,解释如何使用当前版本的MaxQuant以高效方式分析大规模稳定同位素标记氨基酸在细胞培养中(SILAC)标记的数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索