Tang Xiaan, Zhang Yi, Meng Panpan, Yuan Yingke, Li Changhao, Zhi Xiaotan, Wang Chunyan
College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, China.
Biology (Basel). 2025 Apr 30;14(5):490. doi: 10.3390/biology14050490.
This article methodically reveals how, in woody plants (poplar), the interaction between N and P coordinates root structure and nutrient absorption through a complex hormone signaling network. This study bridges a significant gap in our knowledge of nutrient interaction networks. The results demonstrate that NO significantly enhances the gene expression and enzymatic activity of organic acid synthases (MDH, PEPC) and APs. Furthermore, it synergizes with IAA/ABA signals to refine root structure, enhancing the surface area for P absorption. In low Pi availability environments, NO further promotes P recycling by simultaneously boosting the levels of Pi transport proteins (notably, the PHO family), facilitating myo-inositol phosphate metabolism (via IMP3/ITPK1-mediated PP-InsPs degradation), and augmenting IAA/SA signals. Pi induces the activity of N assimilation enzymes (GS/GOGAT/GDH), facilitating nitrogen metabolism. However, in the absence of N, it leads to a metabolic imbalance characterized by high enzymatic activity but low efficiency. Alternatively, adequate N availability allows Pi to improve root robustness and N assimilation efficiency, mediated by IAA/GA accumulation and ABA signaling (e.g., /). We propose the existence of an intricate network in poplar, orchestrated by transcriptional cascades, metabolic regulation, and hormonal synergism. Key modules such as -, , , and are likely central to this network's function. These findings offer a foundational framework for the development of molecular breeding and precise fertilization strategies, enhancing the efficient use of N and P in forestry.
本文系统地揭示了在木本植物(杨树)中,氮(N)和磷(P)之间的相互作用如何通过复杂的激素信号网络协调根系结构和养分吸收。这项研究填补了我们在养分相互作用网络知识方面的重大空白。结果表明,一氧化氮(NO)显著增强了有机酸合成酶(苹果酸脱氢酶、磷酸烯醇式丙酮酸羧化酶)和酸性磷酸酶的基因表达及酶活性。此外,它与生长素/脱落酸信号协同作用以优化根系结构,增加磷吸收的表面积。在低磷有效性环境中,NO通过同时提高磷转运蛋白(特别是PHO家族)的水平、促进肌醇磷酸代谢(通过IMP3/ITPK1介导的磷酸肌醇降解)以及增强生长素/水杨酸信号,进一步促进磷的循环利用。磷诱导氮同化酶(谷氨酰胺合成酶/谷氨酸合酶/谷氨酸脱氢酶)的活性,促进氮代谢。然而,在缺乏氮的情况下,会导致以高酶活性但低效率为特征的代谢失衡。相反,充足的氮供应使磷能够通过生长素/赤霉素积累和脱落酸信号(例如/)介导,提高根系健壮性和氮同化效率。我们提出杨树中存在一个由转录级联、代谢调控和激素协同作用精心编排的复杂网络。诸如-、、和等关键模块可能对该网络的功能至关重要。这些发现为分子育种和精准施肥策略的开发提供了基础框架,提高了林业中氮和磷的有效利用。