Nehilla Barrett J, Nataraj Nakul, Gaborski Thomas R, McGrath James L
Department of Biomedical Engineering, Box 270168, University of Rochester, Rochester, NY 14627, USA.
SiMPore Inc., 150 Lucius Gordon Dr. Suite 119, West Henrietta, NY 14586, USA.
Acta Biomater. 2014 Nov;10(11):4670-4677. doi: 10.1016/j.actbio.2014.07.022. Epub 2014 Jul 27.
Assays for initiating, controlling and studying endothelial cell behavior and blood vessel formation have applications in developmental biology, cancer and tissue engineering. In vitro vasculogenesis models typically combine complex three-dimensional gels of extracellular matrix proteins with other stimuli like growth factor supplements. Biomaterials with unique micro- and nanoscale features may provide simpler substrates to study endothelial cell morphogenesis. In this work, patterns of nanoporous, nanothin silicon membranes (porous nanocrystalline silicon, or pnc-Si) are fabricated to control the permeability of an endothelial cell culture substrate. Permeability on the basal surface of primary and immortalized endothelial cells causes vacuole formation and endothelial organization into capillary-like structures. This phenomenon is repeatable, robust and controlled entirely by patterns of free-standing, highly permeable pnc-Si membranes. Pnc-Si is a new biomaterial with precisely defined micro- and nanoscale features that can be used as a unique in vitro platform to study endothelial cell behavior and vasculogenesis.
用于启动、控制和研究内皮细胞行为及血管形成的检测方法在发育生物学、癌症和组织工程领域具有应用价值。体外血管生成模型通常将细胞外基质蛋白的复杂三维凝胶与其他刺激因素(如生长因子补充剂)相结合。具有独特微米和纳米尺度特征的生物材料可能为研究内皮细胞形态发生提供更简单的基质。在这项工作中,制备了纳米多孔、纳米薄硅膜(多孔纳米晶硅,或pnc-Si)的图案,以控制内皮细胞培养底物的渗透性。原代和永生化内皮细胞基底表面的渗透性会导致液泡形成以及内皮细胞组织成毛细血管样结构。这种现象是可重复的、稳定的,并且完全由独立的、高渗透性的pnc-Si膜图案控制。Pnc-Si是一种具有精确界定的微米和纳米尺度特征的新型生物材料,可作为研究内皮细胞行为和血管生成的独特体外平台。