Suppr超能文献

用于生理屏障建模的坚固且具有梯度厚度的多孔膜。

Robust and Gradient Thickness Porous Membranes for Modeling of Physiological Barriers.

作者信息

Gholizadeh Shayan, Allahyari Zahra, Carter Robert, Delgadillo Luis F, Blaquiere Marine, Nouguier-Morin Frederic, Marchi Nicola, Gaborski Thomas R

机构信息

Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA.

Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA.

出版信息

Adv Mater Technol. 2020 Dec;5(12). doi: 10.1002/admt.202000474. Epub 2020 Nov 9.

Abstract

Porous membranes are fundamental elements for tissue-chip barrier and co-culture models. However, the exaggerated thickness of commonly available membranes may represent a stumbling block impeding a more accurate modeling. Existing techniques to fabricate membranes such as solvent cast, spin-coating, sputtering and PE-CVD result in uniform thickness films. Here, we developed a robust method to generate ultrathin porous parylene C (UPP) membranes not just with precise thicknesses down to 300 nm, but with variable gradients in thicknesses, while at the same time having porosities up to 25%. We also show surface etching and increased roughness lead to improved cell attachment. Next, we examined the mechanical properties of UPP membranes with varying porosity and thickness and fit our data to previously published models, which can help determine practical upper limits of porosity and lower limits of thickness. Lastly, we validate a straightforward approach allowing the successful integration of the UPP membranes into a prototyped 3D-printed scaffold, demonstrating mechanical robustness and allowing cell adhesion under varying flow conditions. Collectively, our results support the integration and the use of UPP membranes to examine cell-cell interaction in vitro.

摘要

多孔膜是组织芯片屏障和共培养模型的基本要素。然而,市售膜的厚度过大可能成为阻碍更精确建模的绊脚石。现有的制造膜的技术,如溶剂浇铸、旋涂、溅射和等离子体增强化学气相沉积(PE-CVD),会产生厚度均匀的薄膜。在此,我们开发了一种可靠的方法来制备超薄多孔聚对二甲苯C(UPP)膜,不仅厚度精确至300nm,而且厚度具有可变梯度,同时孔隙率高达25%。我们还表明,表面蚀刻和粗糙度增加会改善细胞附着。接下来,我们研究了不同孔隙率和厚度的UPP膜的力学性能,并将我们的数据与先前发表的模型进行拟合,这有助于确定孔隙率的实际上限和厚度的下限。最后,我们验证了一种直接的方法,该方法可成功地将UPP膜整合到原型3D打印支架中,证明了其机械稳健性,并允许在不同流动条件下细胞黏附。总的来说,我们的结果支持UPP膜在体外研究细胞间相互作用中的整合和应用。

相似文献

引用本文的文献

3
Biomaterials for neuroengineering: applications and challenges.用于神经工程的生物材料:应用与挑战。
Regen Biomater. 2025 Feb 21;12:rbae137. doi: 10.1093/rb/rbae137. eCollection 2025.
5
Studies of Transendothelial Migration for Biological and Drug Discovery.用于生物与药物研发的跨内皮迁移研究
Front Med Technol. 2020 Nov 16;2:600616. doi: 10.3389/fmedt.2020.600616. eCollection 2020.

本文引用的文献

1
Uniaxial Extension of Ultrathin Freestanding Polymer Films.超薄独立聚合物薄膜的单轴拉伸
ACS Macro Lett. 2019 Sep 17;8(9):1080-1085. doi: 10.1021/acsmacrolett.9b00408. Epub 2019 Aug 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验