Suppr超能文献

用于生理屏障建模的坚固且具有梯度厚度的多孔膜。

Robust and Gradient Thickness Porous Membranes for Modeling of Physiological Barriers.

作者信息

Gholizadeh Shayan, Allahyari Zahra, Carter Robert, Delgadillo Luis F, Blaquiere Marine, Nouguier-Morin Frederic, Marchi Nicola, Gaborski Thomas R

机构信息

Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA.

Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA.

出版信息

Adv Mater Technol. 2020 Dec;5(12). doi: 10.1002/admt.202000474. Epub 2020 Nov 9.

Abstract

Porous membranes are fundamental elements for tissue-chip barrier and co-culture models. However, the exaggerated thickness of commonly available membranes may represent a stumbling block impeding a more accurate modeling. Existing techniques to fabricate membranes such as solvent cast, spin-coating, sputtering and PE-CVD result in uniform thickness films. Here, we developed a robust method to generate ultrathin porous parylene C (UPP) membranes not just with precise thicknesses down to 300 nm, but with variable gradients in thicknesses, while at the same time having porosities up to 25%. We also show surface etching and increased roughness lead to improved cell attachment. Next, we examined the mechanical properties of UPP membranes with varying porosity and thickness and fit our data to previously published models, which can help determine practical upper limits of porosity and lower limits of thickness. Lastly, we validate a straightforward approach allowing the successful integration of the UPP membranes into a prototyped 3D-printed scaffold, demonstrating mechanical robustness and allowing cell adhesion under varying flow conditions. Collectively, our results support the integration and the use of UPP membranes to examine cell-cell interaction in vitro.

摘要

多孔膜是组织芯片屏障和共培养模型的基本要素。然而,市售膜的厚度过大可能成为阻碍更精确建模的绊脚石。现有的制造膜的技术,如溶剂浇铸、旋涂、溅射和等离子体增强化学气相沉积(PE-CVD),会产生厚度均匀的薄膜。在此,我们开发了一种可靠的方法来制备超薄多孔聚对二甲苯C(UPP)膜,不仅厚度精确至300nm,而且厚度具有可变梯度,同时孔隙率高达25%。我们还表明,表面蚀刻和粗糙度增加会改善细胞附着。接下来,我们研究了不同孔隙率和厚度的UPP膜的力学性能,并将我们的数据与先前发表的模型进行拟合,这有助于确定孔隙率的实际上限和厚度的下限。最后,我们验证了一种直接的方法,该方法可成功地将UPP膜整合到原型3D打印支架中,证明了其机械稳健性,并允许在不同流动条件下细胞黏附。总的来说,我们的结果支持UPP膜在体外研究细胞间相互作用中的整合和应用。

相似文献

1
Robust and Gradient Thickness Porous Membranes for Modeling of Physiological Barriers.
Adv Mater Technol. 2020 Dec;5(12). doi: 10.1002/admt.202000474. Epub 2020 Nov 9.
2
Porous Polymeric Nanofilms for Recreating the Basement Membrane in an Endothelial Barrier-on-Chip.
ACS Appl Mater Interfaces. 2024 Mar 13;16(10):13006-13017. doi: 10.1021/acsami.3c16134. Epub 2024 Feb 27.
3
Ultrathin transparent membranes for cellular barrier and co-culture models.
Biofabrication. 2017 Feb 14;9(1):015019. doi: 10.1088/1758-5090/aa5ba7.
6
PDMS Sylgard 527-Based Freely Suspended Ultrathin Membranes Exhibiting Mechanistic Characteristics of Vascular Basement Membranes.
ACS Appl Mater Interfaces. 2018 Nov 28;10(47):40388-40400. doi: 10.1021/acsami.8b12309. Epub 2018 Nov 15.
7
Large-Scale Fabrication of Freestanding Polymer Ultrathin Porous Membranes for Transparent Transwell Coculture Systems.
ACS Nano. 2024 Mar 19;18(11):8168-8179. doi: 10.1021/acsnano.3c11946. Epub 2024 Mar 4.
8
Polyethylene Battery Separator as a Porous Support for Thin Film Composite Organic Solvent Nanofiltration Membranes.
ACS Appl Mater Interfaces. 2018 Dec 19;10(50):44050-44058. doi: 10.1021/acsami.8b16403. Epub 2018 Dec 5.
9
Use of porous membranes in tissue barrier and co-culture models.
Lab Chip. 2018 Jun 12;18(12):1671-1689. doi: 10.1039/c7lc01248a.
10
Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates.
Nanoscale. 2014 Sep 21;6(18):10798-805. doi: 10.1039/c4nr03070b. Epub 2014 Aug 8.

引用本文的文献

2
Development of a PEGylated Parylene Nanopocket Membrane for the Capture and Release of Lipid Vesicles.
bioRxiv. 2025 Jun 6:2025.06.02.657433. doi: 10.1101/2025.06.02.657433.
3
Biomaterials for neuroengineering: applications and challenges.
Regen Biomater. 2025 Feb 21;12:rbae137. doi: 10.1093/rb/rbae137. eCollection 2025.
5
Studies of Transendothelial Migration for Biological and Drug Discovery.
Front Med Technol. 2020 Nov 16;2:600616. doi: 10.3389/fmedt.2020.600616. eCollection 2020.
6
Microengineered 3D Collagen Gels with Independently Tunable Fiber Anisotropy and Directionality.
Adv Mater Technol. 2021 Apr;6(4). doi: 10.1002/admt.202001186. Epub 2021 Mar 10.

本文引用的文献

1
Uniaxial Extension of Ultrathin Freestanding Polymer Films.
ACS Macro Lett. 2019 Sep 17;8(9):1080-1085. doi: 10.1021/acsmacrolett.9b00408. Epub 2019 Aug 14.
2
Micropatterned Poly(ethylene glycol) Islands Disrupt Endothelial Cell-Substrate Interactions Differently from Microporous Membranes.
ACS Biomater Sci Eng. 2020 Feb 10;6(2):959-968. doi: 10.1021/acsbiomaterials.9b01584. Epub 2019 Dec 12.
3
Recent advances in human iPSC-derived models of the blood-brain barrier.
Fluids Barriers CNS. 2020 Apr 22;17(1):30. doi: 10.1186/s12987-020-00191-7.
4
Nanofabrication of Isoporous Membranes for Cell Fractionation.
Sci Rep. 2020 Apr 9;10(1):6138. doi: 10.1038/s41598-020-62937-5.
6
Recent Progress in Microfluidic Models of the Blood-Brain Barrier.
Micromachines (Basel). 2019 Jun 5;10(6):375. doi: 10.3390/mi10060375.
7
Highly Adherent Parylene-C Coatings With Nanostructuring for Enhanced Cell Adhesion and Growth.
IEEE Trans Nanobioscience. 2019 Apr;18(2):230-233. doi: 10.1109/TNB.2019.2905498. Epub 2019 Mar 15.
8
Ultrathin Dual-Scale Nano- and Microporous Membranes for Vascular Transmigration Models.
Small. 2019 Feb;15(6):e1804111. doi: 10.1002/smll.201804111. Epub 2019 Jan 11.
9
A silicon nanomembrane platform for the visualization of immune cell trafficking across the human blood-brain barrier under flow.
J Cereb Blood Flow Metab. 2019 Mar;39(3):395-410. doi: 10.1177/0271678X18820584. Epub 2018 Dec 19.
10
Flat and microstructured polymeric membranes in organs-on-chips.
J R Soc Interface. 2018 Jul;15(144). doi: 10.1098/rsif.2018.0351.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验