DesOrmeaux J P S, Winans J D, Wayson S E, Gaborski T R, Khire T S, Striemer C C, McGrath J L
SiMPore, West Henrietta, NY 14586, USA.
Nanoscale. 2014 Sep 21;6(18):10798-805. doi: 10.1039/c4nr03070b. Epub 2014 Aug 8.
The extraordinary permeability and manufacturability of ultrathin silicon-based membranes are enabling devices with improved performance and smaller sizes in such important areas as molecular filtration and sensing, cell culture, electroosmotic pumping, and hemodialysis. Because of the robust chemical and mechanical properties of silicon nitride (SiN), several laboratories have developed techniques for patterning nanopores in SiN using reactive ion etching (RIE) through a template structure. These methods however, have failed to produce pores small enough for ultrafiltration (<100 nm) in SiN and involve templates that are prone to microporous defects. Here we present a facile, wafer-scale method to produce nanoporous silicon nitride (NPN) membranes using porous nanocrystalline silicon (pnc-Si) as a self-assembling, defect free, RIE masking layer. By modifying the mask layer morphology and the RIE etch conditions, the pore sizes of NPN can be adjusted between 40 nm and 80 nm with porosities reaching 40%. The resulting NPN membranes exhibit higher burst pressures than pnc-Si membranes while having 5× greater permeability. NPN membranes also demonstrate the capacity for high resolution separations (<10 nm) seen previously with pnc-Si membranes. We further demonstrate that human endothelial cells can be grown on NPN membranes, verifying the biocompatibility of NPN and demonstrating the potential of this material for cell culture applications.
超薄硅基膜具有非凡的渗透性和可制造性,这使得在分子过滤与传感、细胞培养、电渗泵以及血液透析等重要领域中,能制造出性能更优、尺寸更小的设备。由于氮化硅(SiN)具有强大的化学和机械性能,多个实验室已开发出通过模板结构利用反应离子蚀刻(RIE)在SiN中对纳米孔进行图案化的技术。然而,这些方法未能在SiN中制造出足够小的用于超滤的孔(<100 nm),并且所涉及的模板容易出现微孔缺陷。在此,我们展示一种简便的、晶圆级方法,该方法使用多孔纳米晶硅(pnc-Si)作为自组装、无缺陷的RIE掩膜层来制造纳米多孔氮化硅(NPN)膜。通过改变掩膜层形态和RIE蚀刻条件,NPN的孔径可在40 nm至80 nm之间调节,孔隙率可达40%。所得的NPN膜比pnc-Si膜表现出更高的破裂压力,同时渗透性高5倍。NPN膜还展现出与之前pnc-Si膜相同的高分辨率分离(<10 nm)能力。我们进一步证明人类内皮细胞能够在NPN膜上生长,验证了NPN的生物相容性,并展示了这种材料在细胞培养应用中的潜力。