Babichev A V, Gasumyants V E, Egorov A Yu, Vitusevich S, Tchernycheva M
St. Petersburg Academic University, Nanotechnology Research and Education Centre RAS, Khlopin Str. 8/3, 194021, St. Petersburg, Russia. Forschungszentrum Jülich, Peter Grünberg Institut (PFI-8), 52425 Jülich, Germany. Institut d'Electronique Fondamentale, UMR 8622 CNRS, University Paris Sud XI, 91405 Orsay cedex, France. Ioffe Physical Technical Institute of the Russian Academy of Science (RAS), Polytechnicheskaya Str. 26, 194021 St. Petersburg, Russia.
Nanotechnology. 2014 Aug 22;25(33):335707. doi: 10.1088/0957-4484/25/33/335707. Epub 2014 Jul 30.
The optimization of contacts between graphene and metals is important for many optoelectronic applications. In this work, we evaluate the contact resistance and sheet resistance of monolayer and few-layered graphene with different metallizations using the transfer length method (TLM). Graphene was obtained by the chemical vapor deposition technique (CVD-graphene) and transferred onto GaAs and Si/SiO₂ substrates. To account for the quality of large-area contacts used in a number of practical applications, a millimeter-wide TLM pattern was used for transport measurements. Different metals--namely, Ag, Pt, Cr, Au, Ni, and Ti--have been tested. The minimal contact resistance Rc obtained in this work is 11.3 kΩ μm for monolayer CVD-graphene, and 6.3 kΩ μm for a few-layered graphene. Annealing allows us to decrease the contact resistance Rc and achieve 1.7 kΩm μm for few-layered graphene on GaAs substrate with Au contacts. The minimal sheet resistance Rsh of few-layered graphene transferred to GaAs and Si/SiO₂ substrates are 0.28 kΩ/□ and 0.27 kΩ/□. The Rsh value of monolayer graphene on the GaAs substrate is 8 times higher (2.3 kΩ/□), but it reduces for the monolayer graphene on Si/SiO₂ (1.4 kΩ/□). For distances between the contacts below 5 μm, a considerable reduction in the resistance per unit length was observed, which is explained by the changes in doping level caused by graphene suspension at small distances between contact pads.
对于许多光电子应用而言,优化石墨烯与金属之间的接触至关重要。在这项工作中,我们使用转移长度法(TLM)评估了具有不同金属化的单层和少层石墨烯的接触电阻和薄层电阻。石墨烯通过化学气相沉积技术(CVD石墨烯)获得,并转移到GaAs和Si/SiO₂衬底上。为了考虑许多实际应用中使用的大面积接触的质量,采用了毫米宽的TLM图案进行传输测量。测试了不同的金属,即Ag、Pt、Cr、Au、Ni和Ti。在这项工作中获得的最小接触电阻Rc,对于单层CVD石墨烯为11.3kΩ·μm,对于少层石墨烯为6.3kΩ·μm。退火使我们能够降低接触电阻Rc,并在具有Au接触的GaAs衬底上的少层石墨烯上实现1.7kΩ·μm的接触电阻。转移到GaAs和Si/SiO₂衬底上的少层石墨烯的最小薄层电阻Rsh分别为0.28kΩ/□和0.27kΩ/□。GaAs衬底上单层石墨烯的Rsh值高出8倍(2.3kΩ/□),但在Si/SiO₂上的单层石墨烯的Rsh值降低(1.4kΩ/□)。对于接触之间距离小于5μm的情况,观察到单位长度电阻有相当大的降低,这是由接触垫之间小距离处石墨烯悬浮引起的掺杂水平变化所解释的。