Suppr超能文献

衬底微观结构对化学气相沉积法制备石墨烯传输性能的影响

Influence of Substrate Microstructure on the Transport Properties of CVD-Graphene.

作者信息

Babichev Andrey V, Rykov Sergey A, Tchernycheva Maria, Smirnov Alexander N, Davydov Valery Yu, Kumzerov Yurii A, Butko Vladimir Y

机构信息

Institut d'Electronique Fondamentale, UMR 8622 CNRS, University Paris Saclay , Orsay 91405, France.

Ioffe Institute , St. Petersburg 194021, Russia.

出版信息

ACS Appl Mater Interfaces. 2016 Jan 13;8(1):240-6. doi: 10.1021/acsami.5b08479. Epub 2015 Dec 24.

Abstract

We report the study of electrical transport in few-layered CVD-graphene located on nanostructured surfaces in view of its potential application as a transparent contact to optoelectronic devices. Two specific surfaces with a different characteristic feature scale are analyzed: semiconductor micropyramids covered with SiO2 layer and opal structures composed of SiO2 nanospheres. Scanning tunneling microscopy (STM) and scanning electron microscopy (SEM), as well as Raman spectroscopy, have been used to determine graphene/substrate surface profile. The graphene transfer on the opal face centered cubic arrangement of spheres with a diameter of 230 nm leads to graphene corrugation (graphene partially reproduces the opal surface profile). This structure results in a reduction by more than 3 times of the graphene sheet conductivity compared to the conductivity of reference graphene located on a planar SiO2 surface but does not affect the contact resistance to graphene. The graphene transfer onto an organized array of micropyramids results in a graphene suspension. Unlike opal, the graphene suspension on pyramids leads to a reduction of both the contact resistance and the sheet resistance of graphene compared to resistance of the reference graphene/flat SiO2 sample. The sample annealing is favorable to improve the contact resistance to CVD-graphene; however, it leads to the increase of its sheet resistance.

摘要

鉴于其作为光电器件透明接触的潜在应用,我们报道了对位于纳米结构表面的少层化学气相沉积(CVD)石墨烯中电输运的研究。分析了具有不同特征尺度的两种特定表面:覆盖有SiO₂层的半导体微金字塔和由SiO₂纳米球组成的蛋白石结构。扫描隧道显微镜(STM)、扫描电子显微镜(SEM)以及拉曼光谱已被用于确定石墨烯/衬底表面轮廓。将石墨烯转移到直径为230nm的球的蛋白石面心立方排列上会导致石墨烯产生波纹(石墨烯部分再现蛋白石表面轮廓)。与位于平面SiO₂表面的参考石墨烯的电导率相比,这种结构导致石墨烯片层电导率降低了3倍以上,但不影响与石墨烯的接触电阻。将石墨烯转移到有组织的微金字塔阵列上会导致石墨烯悬浮。与蛋白石不同,与参考石墨烯/平坦SiO₂样品的电阻相比,金字塔上的石墨烯悬浮导致石墨烯的接触电阻和片层电阻都降低。样品退火有利于改善对CVD石墨烯的接触电阻;然而,这会导致其片层电阻增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验