Center for Spintronics and Quantum Computation, University of California, Santa Barbara , Santa Barbara, California 93106, United States.
Nano Lett. 2014 Sep 10;14(9):4959-64. doi: 10.1021/nl501208s. Epub 2014 Aug 4.
The nitrogen-vacancy (NV) center in diamond is an attractive platform for quantum information and sensing applications because of its room temperature operation and optical addressability. A major research effort focuses on improving the quantum coherence of this defect in engineered micro- and nanoscale diamond particles (DPs), which could prove useful for high-resolution sensing in fluidic environments. In this work we fabricate cylindrical diamonds particles with finely tuned and highly reproducible sizes (diameter and height ranging from 100 to 700 and 500 nm to 2 μm, respectively) using high-purity, single-crystal diamond membranes with shallow-doped NV centers. We show that the spin coherence time of the NV centers in these particles exceeds 700 μs, opening the possibility for the creation of ultrahigh sensitivity micro- and nanoscale sensors. Moreover, these particles can be efficiently transferred into a water suspension and delivered to the region to probe. In particular, we introduce a DP suspension inside a microfluidic circuit and control position and orientation of the particles using an optical trapping apparatus. We demonstrate a DC magnetic sensitivity of 9 μT/√Hz in fluid as well as long-term trapping stability (>30 h), which paves the way toward the use of high-sensitivity pulse techniques on contactless probes manipulated within biological settings.
钻石中的氮空位(NV)中心是量子信息和传感应用的有吸引力的平台,因为它可以在室温下工作并且可以进行光学寻址。一个主要的研究重点是提高工程微纳尺度钻石颗粒(DP)中这种缺陷的量子相干性,这对于在流体环境中的高分辨率传感可能是有用的。在这项工作中,我们使用具有浅掺杂 NV 中心的高纯度单晶金刚石膜来制造具有精细可调且高度可重复尺寸(直径和高度分别为 100 至 700nm 和 500nm 至 2μm)的圆柱形 DP。我们表明,这些 DP 中的 NV 中心的自旋相干时间超过 700μs,为创建超高灵敏度的微纳尺度传感器开辟了可能性。此外,这些 DP 可以有效地转移到水悬浮液中,并输送到要探测的区域。特别地,我们在微流控回路中引入 DP 悬浮液,并使用光学捕获装置控制 DP 的位置和取向。我们证明了在流体中的 DC 磁灵敏度为 9μT/√Hz 以及超过 30 小时的长期捕获稳定性,这为在生物环境中操纵的非接触式探针上使用高灵敏度脉冲技术铺平了道路。