Suppr超能文献

一种荧光蛋白自旋量子比特。

A fluorescent-protein spin qubit.

作者信息

Feder Jacob S, Soloway Benjamin S, Verma Shreya, Geng Zhi Z, Wang Shihao, Kifle Bethel B, Riendeau Emmeline G, Tsaturyan Yeghishe, Weiss Leah R, Xie Mouzhe, Huang Jun, Esser-Kahn Aaron, Gagliardi Laura, Awschalom David D, Maurer Peter C

机构信息

Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.

Department of Chemistry, University of Chicago, Chicago, IL, USA.

出版信息

Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09417-w.

Abstract

Quantum bits (qubits) are two-level quantum systems that support initialization, readout and coherent control. Optically addressable spin qubits form the foundation of an emerging generation of nanoscale sensors. The engineering of these qubits has mainly focused on solid-state systems. However, fluorescent proteins, rather than exogenous fluorescent probes, have become the gold standard for in vivo microscopy because of their genetic encodability. Although fluorescent proteins possess a metastable triplet state, they have not been investigated as qubits. Here we realize an optically addressable spin qubit in enhanced yellow fluorescent protein. A near-infrared laser pulse enables triggered readout of the triplet state with up to 20% spin contrast. Using coherent microwave control of the enhanced-yellow-fluorescent-protein spin at liquid-nitrogen temperatures, we measure a (16 ± 2) μs coherence time under Carr-Purcell-Meiboom-Gill decoupling. We express the qubit in mammalian cells, maintaining contrast and coherent control despite the complex intracellular environment. Finally, we demonstrate optically detected magnetic resonance in bacterial cells at room temperature with contrast up to 8%. Our results introduce fluorescent proteins as a powerful qubit platform that paves the way for applications in the life sciences, such as nanoscale field sensing and spin-based imaging modalities.

摘要

量子比特(qubits)是支持初始化、读出和相干控制的二能级量子系统。光学可寻址自旋量子比特构成了新一代纳米级传感器的基础。这些量子比特的工程主要集中在固态系统上。然而,由于荧光蛋白具有基因可编码性,相较于外源性荧光探针,它们已成为体内显微镜检查的金标准。尽管荧光蛋白具有亚稳态三重态,但尚未作为量子比特进行研究。在此,我们在增强型黄色荧光蛋白中实现了光学可寻址自旋量子比特。一个近红外激光脉冲能够以高达20%的自旋对比度触发三重态的读出。在液氮温度下,利用对增强型黄色荧光蛋白自旋的相干微波控制,我们在卡尔 - 珀塞尔 - 梅博姆 - 吉尔去耦下测量到了(16±2)微秒的相干时间。我们在哺乳动物细胞中表达了该量子比特,尽管细胞内环境复杂,但仍保持了对比度和相干控制。最后,我们在室温下的细菌细胞中展示了光学检测磁共振,对比度高达8%。我们的结果将荧光蛋白引入为一个强大的量子比特平台,为生命科学中的应用,如纳米级场传感和基于自旋的成像模式铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验