Suppr超能文献

在核壳金刚石纳米晶体中调控自旋相干性。

Engineering spin coherence in core-shell diamond nanocrystals.

作者信息

Zvi Uri, Candido Denis R, Weiss Adam M, Jones Aidan R, Chen Lingjie, Golovina Iryna, Yu Xiaofei, Wang Stella, Talapin Dmitri V, Flatté Michael E, Esser-Kahn Aaron P, Maurer Peter C

机构信息

Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637.

Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242.

出版信息

Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2422542122. doi: 10.1073/pnas.2422542122. Epub 2025 May 21.

Abstract

Fluorescent diamond nanocrystals can host spin qubit sensors capable of probing the physical properties of biological systems with nanoscale spatial resolution. Sub-100 nm diamond nanosensors can readily be delivered into intact cells and even living organisms. However, applications beyond current proof-of-principle experiments require a substantial increase in sensitivity, which is limited by surface induced charge instability and electron-spin dephasing. In this work, we utilize engineered core-shell structures to achieve a drastic increase in qubit coherence times () from 1.1 to 35 μs in bare nanodiamonds to upward of 52 to 87 μs. We use electron-paramagnetic-resonance results to present a band bending model and connect silica encapsulation to the removal of deleterious mid-gap surface states that are negatively affecting the qubit's spin properties. Combined with a 1.9-fold increase in particle luminescence these advances correspond to up to two-order-of-magnitude reduction in integration time. Probing qubit dynamics at a single particle level further reveals that the noise characteristics fundamentally change from a bath with spins that rearrange their spatial configuration during the course of an experiment to a more dilute static bath. The observed results shed light on the underlying mechanisms governing fluorescence and spin properties in diamond nanocrystals and offer an effective noise mitigation strategy based on engineered core-shell structures.

摘要

荧光金刚石纳米晶体可承载自旋量子比特传感器,能够以纳米级空间分辨率探测生物系统的物理特性。尺寸小于100 nm的金刚石纳米传感器可以很容易地被递送至完整细胞甚至活生物体中。然而,要超越当前的原理验证实验进行应用,需要大幅提高灵敏度,而灵敏度受到表面诱导电荷不稳定性和电子自旋退相的限制。在这项工作中,我们利用工程化的核壳结构,将裸纳米金刚石中的量子比特相干时间()从1.1 μs大幅提高到35 μs,再到52至87 μs以上。我们利用电子顺磁共振结果提出了一个能带弯曲模型,并将二氧化硅封装与去除有害的带隙中间表面态联系起来,这些表面态对量子比特的自旋特性产生负面影响。结合粒子发光提高1.9倍,这些进展相应地使积分时间减少了高达两个数量级。在单粒子水平上探测量子比特动力学进一步揭示,噪声特性从在实验过程中自旋重新排列其空间构型的热库,从根本上转变为更稀薄的静态热库。观察到的结果揭示了金刚石纳米晶体中荧光和自旋特性的潜在机制,并提供了一种基于工程化核壳结构的有效噪声缓解策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2300/12130875/19f596ba7a86/pnas.2422542122fig01.jpg

相似文献

1
Engineering spin coherence in core-shell diamond nanocrystals.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2422542122. doi: 10.1073/pnas.2422542122. Epub 2025 May 21.
2
Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers.
Nano Lett. 2014 Jan 8;14(1):32-6. doi: 10.1021/nl402799u. Epub 2013 Nov 15.
4
A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9.
Nat Nanotechnol. 2018 Feb;13(2):102-106. doi: 10.1038/s41565-017-0014-x. Epub 2017 Dec 18.
5
Bright Quantum-Grade Fluorescent Nanodiamonds.
ACS Nano. 2024 Dec 31;18(52):35202-35213. doi: 10.1021/acsnano.4c03424. Epub 2024 Dec 16.
6
An addressable quantum dot qubit with fault-tolerant control-fidelity.
Nat Nanotechnol. 2014 Dec;9(12):981-5. doi: 10.1038/nnano.2014.216. Epub 2014 Oct 12.
7
Fast and Sensitive Detection of Paramagnetic Species Using Coupled Charge and Spin Dynamics in Strongly Fluorescent Nanodiamonds.
ACS Appl Mater Interfaces. 2019 Jul 10;11(27):24412-24422. doi: 10.1021/acsami.9b05779. Epub 2019 Jun 27.
8
Nanophotonic quantum sensing with engineered spin-optic coupling.
Nanophotonics. 2023 Jan 9;12(3):441-449. doi: 10.1515/nanoph-2022-0682. eCollection 2023 Feb.
9
Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.
Acc Chem Res. 2016 Mar 15;49(3):400-7. doi: 10.1021/acs.accounts.5b00484. Epub 2016 Feb 16.
10
Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors.
Acc Chem Res. 2023 Jan 17;56(2):95-105. doi: 10.1021/acs.accounts.2c00576. Epub 2023 Jan 3.

本文引用的文献

1
Photoinduced Charge Injection from Shallow Point Defects in Diamond into Water.
ACS Appl Mater Interfaces. 2024 Jul 17;16(28):37226-37233. doi: 10.1021/acsami.4c06298. Epub 2024 Jul 8.
2
Quantum Diamonds at the Beach: Chemical Insights into Silica Growth on Nanoscale Diamond using Multimodal Characterization and Simulation.
ACS Nanosci Au. 2023 Sep 15;3(6):462-474. doi: 10.1021/acsnanoscienceau.3c00033. eCollection 2023 Dec 20.
3
Surface-Mediated Charge Transfer of Photogenerated Carriers in Diamond.
Small Methods. 2023 Nov;7(11):e2300423. doi: 10.1002/smtd.202300423. Epub 2023 Aug 18.
4
Probing many-body dynamics in a two-dimensional dipolar spin ensemble.
Nat Phys. 2023;19(6):836-844. doi: 10.1038/s41567-023-01944-5. Epub 2023 Mar 16.
5
High-Quality /O-Terminated Diamond Interface: Band-Gap, Band-Offset and Interfacial Chemistry.
Nanomaterials (Basel). 2022 Nov 22;12(23):4125. doi: 10.3390/nano12234125.
6
Diamond surface engineering for molecular sensing with nitrogen-vacancy centers.
J Mater Chem C Mater. 2022 Sep 1;10(37):13533-13569. doi: 10.1039/d2tc01258h. eCollection 2022 Sep 29.
7
Quantum monitoring of cellular metabolic activities in single mitochondria.
Sci Adv. 2021 May 19;7(21). doi: 10.1126/sciadv.abf0573. Print 2021 May.
8
Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications.
ACS Biomater Sci Eng. 2019 Oct 14;5(10):4882-4898. doi: 10.1021/acsbiomaterials.9b00464. Epub 2019 Sep 27.
9
Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics.
Nature. 2020 Nov;587(7835):588-593. doi: 10.1038/s41586-020-2917-1. Epub 2020 Nov 25.
10
Probing and manipulating embryogenesis via nanoscale thermometry and temperature control.
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14636-14641. doi: 10.1073/pnas.1922730117. Epub 2020 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验