Eberhard Lydia, Schneider Sophie, Eiffler Constantin, Kappel Stefanie, Giannakopoulos Nikolaos Nikitas
Department of Prosthodontics, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany,
Clin Oral Investig. 2015 Mar;19(2):429-36. doi: 10.1007/s00784-014-1266-6. Epub 2014 Aug 1.
Standard procedure for the measurement of masticatory performance is the fractionated sieving of fragmented test food, which is substantially time consuming. The aim of this study was to introduce a less laborious, comparable, and valid technique based on scanning.
Fifty-six Optocal chewing samples were minced by wearers of complete dentures with 15 and 40 chewing strokes and analyzed by both a sieving and a scanning method. The sieving procedure was carried out using ten sieves (5.6, 4.0, 2.8, 2.0, 1.4, 1.0, 0.71, 0.5, 0.355, and 0.25 mm) and measuring the weight of the specific fractions. Scanning was performed with a flatbed scanner (Epson Expression1600Pro, Seiko Epson Corporation, Japan, 1,200 dpi). Scanned images underwent image analysis (ImageJ 1.42q, NIH, USA), which yielded descriptive parameters for each particle. Out of the 2D image, a volume was estimated for each particle. In order to receive a discrete particle size distribution, area-volume-conversion factors were determined. The cumulated weights yielded by either method were curve fitted with the Rosin-Rammler distribution (MATLAB, The MathWorks, Inc., Natick, USA) to determine the median particle size X 50.
The Rosin-Rammler distributions for sieving and scanning resembled each other and showed an excellent correlation in 15/40 chewing strokes (r = 0.995/r = 0.971, P < 0.01, Pearson's correlation coefficient). The median particle sizes varied between 4.77/3.04 and 5.36/5.28 mm (mean 5.07/4.67) for scanning and 4.69/2.39 and 5.23/5.43 mm (mean 5.03/4.57) for sieving. On average, scanning overestimated the X 50 values by 1/2.4 %. The scanning method took 10 min per sample in contrast to 50 min for sieving.
Optical scanning is a valid method comparable to sieving.
The described method is feasible and appropriate for the measurement of masticatory performance of denture wearers.
咀嚼性能测量的标准程序是对破碎的测试食物进行分级筛分,这相当耗时。本研究的目的是引入一种基于扫描的不那么费力、具有可比性且有效的技术。
56个Optocal咀嚼样本由全口义齿佩戴者以15次和40次咀嚼冲程切碎,并通过筛分和扫描方法进行分析。筛分程序使用十个筛子(5.6、4.0、2.8、2.0、1.4、1.0、0.71、0.5、0.355和0.25毫米)进行,并测量特定级分的重量。使用平板扫描仪(爱普生Expression1600Pro,精工爱普生公司,日本,1200 dpi)进行扫描。对扫描图像进行图像分析(ImageJ 1.42q,美国国立卫生研究院),得出每个颗粒的描述性参数。从二维图像中,估计每个颗粒的体积。为了获得离散的粒度分布,确定了面积 - 体积转换因子。两种方法得出的累积重量用罗辛 - 拉姆勒分布(MATLAB,MathWorks公司,美国马萨诸塞州纳蒂克)进行曲线拟合,以确定中位粒径X50。
筛分和扫描的罗辛 - 拉姆勒分布彼此相似,在15/40次咀嚼冲程中显示出极好的相关性(r = 0.995/r = 0.971,P < 0.01,皮尔逊相关系数)。扫描的中位粒径在4.77/3.04至5.36/5.28毫米(平均5.07/4.67)之间,筛分为4.69/2.39至5.23/5.43毫米(平均5.03/4.57)。平均而言,扫描高估X50值1/2.4%。扫描方法每个样本需要10分钟,而筛分为50分钟。
光学扫描是一种与筛分相当的有效方法。
所描述的方法对于测量义齿佩戴者的咀嚼性能是可行且合适的。