Suppr超能文献

并行连续模拟回火及其在大规模分子模拟中的应用。

Parallel continuous simulated tempering and its applications in large-scale molecular simulations.

作者信息

Zang Tianwu, Yu Linglin, Zhang Chong, Ma Jianpeng

机构信息

Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005, USA.

出版信息

J Chem Phys. 2014 Jul 28;141(4):044113. doi: 10.1063/1.4890038.

Abstract

In this paper, we introduce a parallel continuous simulated tempering (PCST) method for enhanced sampling in studying large complex systems. It mainly inherits the continuous simulated tempering (CST) method in our previous studies [C. Zhang and J. Ma, J. Chem. Phys. 130, 194112 (2009); C. Zhang and J. Ma, J. Chem. Phys. 132, 244101 (2010)], while adopts the spirit of parallel tempering (PT), or replica exchange method, by employing multiple copies with different temperature distributions. Differing from conventional PT methods, despite the large stride of total temperature range, the PCST method requires very few copies of simulations, typically 2-3 copies, yet it is still capable of maintaining a high rate of exchange between neighboring copies. Furthermore, in PCST method, the size of the system does not dramatically affect the number of copy needed because the exchange rate is independent of total potential energy, thus providing an enormous advantage over conventional PT methods in studying very large systems. The sampling efficiency of PCST was tested in two-dimensional Ising model, Lennard-Jones liquid and all-atom folding simulation of a small globular protein trp-cage in explicit solvent. The results demonstrate that the PCST method significantly improves sampling efficiency compared with other methods and it is particularly effective in simulating systems with long relaxation time or correlation time. We expect the PCST method to be a good alternative to parallel tempering methods in simulating large systems such as phase transition and dynamics of macromolecules in explicit solvent.

摘要

在本文中,我们介绍了一种用于研究大型复杂系统的增强采样的并行连续模拟回火(PCST)方法。它主要继承了我们先前研究中的连续模拟回火(CST)方法[C. Zhang和J. Ma,《化学物理杂志》130, 194112 (2009); C. Zhang和J. Ma,《化学物理杂志》132, 244101 (2010)],同时采用了并行回火(PT)或副本交换方法的思想,通过使用具有不同温度分布的多个副本。与传统的PT方法不同,尽管总温度范围跨度很大,但PCST方法只需要很少的模拟副本,通常为2 - 3个副本,然而它仍然能够保持相邻副本之间的高交换率。此外,在PCST方法中,系统的大小不会显著影响所需的副本数量,因为交换率与总势能无关,因此在研究非常大的系统时,与传统的PT方法相比具有巨大优势。在二维伊辛模型、 Lennard-Jones液体以及在显式溶剂中对小分子球状蛋白trp-cage的全原子折叠模拟中测试了PCST的采样效率。结果表明,与其他方法相比,PCST方法显著提高了采样效率,并且在模拟具有长弛豫时间或相关时间的系统时特别有效。我们期望PCST方法在模拟大型系统(如显式溶剂中大分子的相变和动力学)时成为并行回火方法的一个很好的替代方法。

相似文献

2
Simulated-tempering replica-exchange method for the multidimensional version.
J Chem Phys. 2009 Sep 7;131(9):094105. doi: 10.1063/1.3204443.
3
Enhanced sampling and applications in protein folding in explicit solvent.
J Chem Phys. 2010 Jun 28;132(24):244101. doi: 10.1063/1.3435332.
6
7
Comparison between integrated and parallel tempering methods in enhanced sampling simulations.
J Chem Phys. 2009 Mar 28;130(12):124111. doi: 10.1063/1.3097129.
8
Determining Protein Folding Pathway and Associated Energetics through Partitioned Integrated-Tempering-Sampling Simulation.
J Chem Theory Comput. 2017 Mar 14;13(3):1229-1243. doi: 10.1021/acs.jctc.6b00967. Epub 2017 Feb 8.
9
On the efficiency of exchange in parallel tempering monte carlo simulations.
J Phys Chem B. 2005 Mar 10;109(9):4189-96. doi: 10.1021/jp045073+.

引用本文的文献

1
Improving low-accuracy protein structures using enhanced sampling techniques.
J Chem Phys. 2018 Aug 21;149(7):072319. doi: 10.1063/1.5027243.
2
Refining protein structures using enhanced sampling techniques with restraints derived from an ensemble-based model.
Protein Sci. 2018 Oct;27(10):1842-1849. doi: 10.1002/pro.3486. Epub 2018 Sep 25.
3
Atomistic simulations indicate the functional loop-to-coiled-coil transition in influenza hemagglutinin is not downhill.
Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):E7905-E7913. doi: 10.1073/pnas.1805442115. Epub 2018 Jul 16.
4
PAGE4 and Conformational Switching: Insights from Molecular Dynamics Simulations and Implications for Prostate Cancer.
J Mol Biol. 2018 Aug 3;430(16):2422-2438. doi: 10.1016/j.jmb.2018.05.011. Epub 2018 Jun 5.
5
Simulating Replica Exchange: Markov State Models, Proposal Schemes, and the Infinite Swapping Limit.
J Phys Chem B. 2016 Aug 25;120(33):8289-301. doi: 10.1021/acs.jpcb.6b02015. Epub 2016 Apr 29.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation.
J Chem Theory Comput. 2008 Jan;4(1):116-22. doi: 10.1021/ct700200b.
7
Confinement-induced states in the folding landscape of the Trp-cage miniprotein.
J Phys Chem B. 2012 Oct 4;116(39):11872-80. doi: 10.1021/jp306727r. Epub 2012 Sep 25.
8
Structural Characterization of λ-Repressor Folding from All-Atom Molecular Dynamics Simulations.
J Phys Chem Lett. 2012 May 3;3(9):1117-1123. doi: 10.1021/jz300017c. Epub 2012 Apr 11.
9
Folding helical proteins in explicit solvent using dihedral-biased tempering.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8139-44. doi: 10.1073/pnas.1112143109. Epub 2012 May 9.
10
Replica exchange statistical temperature molecular dynamics algorithm.
J Phys Chem B. 2012 Jul 26;116(29):8646-53. doi: 10.1021/jp300366j. Epub 2012 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验