Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States.
Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States.
J Mol Biol. 2018 Aug 3;430(16):2422-2438. doi: 10.1016/j.jmb.2018.05.011. Epub 2018 Jun 5.
Prostate-associated gene 4 (PAGE4) is an intrinsically disordered protein implicated in prostate cancer. Thestress-response kinase homeodomain-interacting protein kinase 1 (HIPK1) phosphorylates two residues in PAGE4, serine 9 and threonine 51. Phosphorylation of these two residues facilitates the interaction of PAGE4 with activator protein-1 (AP-1) transcription factor complex to potentiate AP-1's activity. In contrast, hyperphosphorylation of PAGE4 by CDC-like kinase 2 (CLK2) attenuates this interaction with AP-1. Small-angleX-ray scattering and single-molecule fluorescence resonance energy transfer measurements have shown that PAGE4 expands upon hyperphosphorylation and that this expansion is localized to its N-terminal half. To understand the interactions underlying this structural transition, we performed molecular dynamics simulations using Atomistic AWSEM, a multi-scale molecular model that combines atomistic and coarse-grained simulation approaches. Our simulations show that electrostatic interactions drive transient formation of an N-terminal loop, the destabilization of which accounts for the dramatic change in size upon hyperphosphorylation. Phosphorylation also changes the preference of secondary structure formation of the PAGE4 ensemble, which leads to a transition between states that display different degrees of disorder. Finally, we construct a mechanism-based mathematical model that allows us to capture the interactions ofdifferent phosphoforms of PAGE4 with AP-1 and its downstream target, the androgen receptor (AR)-a key therapeutic target in prostate cancer. Our model predicts intracellular oscillatory dynamics of HIPK1-PAGE4, CLK2-PAGE4, and AR activity, indicating phenotypic heterogeneity in an isogenic cell population. Thus, conformational switching of PAGE4 may potentially affect the efficiency of therapeutically targeting AR activity.
前列腺相关基因 4 (PAGE4) 是一种无序蛋白,与前列腺癌有关。应激反应激酶同源结构域相互作用蛋白激酶 1 (HIPK1) 磷酸化 PAGE4 的两个残基,丝氨酸 9 和苏氨酸 51。这两个残基的磷酸化促进了 PAGE4 与激活蛋白-1 (AP-1) 转录因子复合物的相互作用,从而增强了 AP-1 的活性。相反,CDC 样激酶 2 (CLK2) 对 PAGE4 的过度磷酸化削弱了其与 AP-1 的相互作用。小角度 X 射线散射和单分子荧光共振能量转移测量表明,PAGE4 在过度磷酸化后会发生扩张,这种扩张局限于其 N 端的一半。为了理解这种结构转变的相互作用基础,我们使用 Atomistic AWSEM 进行了分子动力学模拟,这是一种多尺度分子模型,结合了原子和粗粒化模拟方法。我们的模拟表明,静电相互作用驱动 N 端环的瞬时形成,其不稳定性解释了过度磷酸化后大小的剧烈变化。磷酸化还改变了 PAGE4 集合形成二级结构的偏好,这导致了不同无序程度的状态之间的转变。最后,我们构建了一个基于机制的数学模型,使我们能够捕捉不同磷酸化形式的 PAGE4 与 AP-1 及其下游靶标雄激素受体 (AR) 的相互作用,AR 是前列腺癌的一个关键治疗靶点。我们的模型预测了 HIPK1-PAGE4、CLK2-PAGE4 和 AR 活性的细胞内振荡动力学,表明在同基因细胞群体中存在表型异质性。因此,PAGE4 的构象转换可能会影响靶向 AR 活性的治疗效率。