Monge Claire, Saha Naresh, Boudou Thomas, Pózos-Vásquez Cuauhtemoc, Dulong Virginie, Glinel Karine, Picart Catherine
CNRS-UMR 5628, Laboratoire des Matériaux et du Génie Physique, CNRS et Institut Polytechnique de Grenoble, Université de Grenoble, 3 parvis L. Néel F-38016 Grenoble, France.
CNRS-UMR 5628, Laboratoire des Matériaux et du Génie Physique, CNRS et Institut Polytechnique de Grenoble, Université de Grenoble, 3 parvis L. Néel F-38016 Grenoble, France; Institute of Condensed Matter & Nanosciences, Bio & Soft Matter division Croix du Sud 1, box L7.04.02 B-1348 Louvain-la-Neuve, Belgium.
Adv Funct Mater. 2013 Jul 19;23(7):3432-3442. doi: 10.1002/adfm.201203580.
, cells are sensitive to the stiffness of their micro-environment and especially to the spatial organization of the stiffness. studies of this phenomenon can help to better understand the mechanisms of the cell response to spatial variations of the matrix stiffness. In this work, we design polelyelectrolyte multilayer films made of poly(L-lysine) and a photo-reactive hyaluronan derivative. These films can be photo-crosslinked through a photomask to create spatial patterns of rigidity. Quartz substrates incorporating a chromium mask are prepared to expose selectively the film to UV light (in a physiological buffer), without any direct contact between the photomask and the soft film. We show that these micropatterns are chemically homogeneous and flat, without any preferential adsorption of adhesive proteins. Three groups of pattern geometries differing by their shape (circles or lines), size (form 2 to 100 μm) or interspacing distance between the motifs are used to study the adhesion and spatial organization of myoblast cells. On large circular micropatterns, the cells form large assemblies that are confined to the stiffest parts. Conversely, when the size of the rigidity patterns is subcellular, the cells respond by forming protrusions. Finally, on linear micropatterns of rigidity, myoblasts align and their nuclei drastically elongate in specific conditions. These results pave the way for the study of the different steps of myoblast fusion in response to matrix rigidity in well-defined geometrical conditions.
细胞对其微环境的硬度敏感,尤其对硬度的空间组织敏感。对这一现象的研究有助于更好地理解细胞对基质硬度空间变化的反应机制。在这项工作中,我们设计了由聚(L-赖氨酸)和光反应性透明质酸衍生物制成的聚电解质多层膜。这些膜可以通过光掩模进行光交联,以创建刚性的空间图案。制备了带有铬掩模的石英基板,以便在生理缓冲液中将膜选择性地暴露于紫外光下,光掩模与软膜之间没有任何直接接触。我们表明,这些微图案在化学上是均匀且平坦的,没有任何粘附蛋白的优先吸附。使用三组形状(圆形或线条)、尺寸(2至100μm)或图案之间的间距不同的图案几何形状来研究成肌细胞的粘附和空间组织。在大的圆形微图案上,细胞形成局限于最硬部分的大聚集体。相反,当刚性图案的尺寸为亚细胞大小时,细胞通过形成突起做出反应。最后,在刚性的线性微图案上,成肌细胞在特定条件下排列,其细胞核急剧伸长。这些结果为在明确的几何条件下研究成肌细胞融合对基质硬度反应的不同步骤铺平了道路。