Suppr超能文献

用于控制成肌细胞黏附和空间组织的刚性图案化聚电解质薄膜。

Rigidity-patterned polyelectrolyte films to control myoblast cell adhesion and spatial organization.

作者信息

Monge Claire, Saha Naresh, Boudou Thomas, Pózos-Vásquez Cuauhtemoc, Dulong Virginie, Glinel Karine, Picart Catherine

机构信息

CNRS-UMR 5628, Laboratoire des Matériaux et du Génie Physique, CNRS et Institut Polytechnique de Grenoble, Université de Grenoble, 3 parvis L. Néel F-38016 Grenoble, France.

CNRS-UMR 5628, Laboratoire des Matériaux et du Génie Physique, CNRS et Institut Polytechnique de Grenoble, Université de Grenoble, 3 parvis L. Néel F-38016 Grenoble, France; Institute of Condensed Matter & Nanosciences, Bio & Soft Matter division Croix du Sud 1, box L7.04.02 B-1348 Louvain-la-Neuve, Belgium.

出版信息

Adv Funct Mater. 2013 Jul 19;23(7):3432-3442. doi: 10.1002/adfm.201203580.

Abstract

, cells are sensitive to the stiffness of their micro-environment and especially to the spatial organization of the stiffness. studies of this phenomenon can help to better understand the mechanisms of the cell response to spatial variations of the matrix stiffness. In this work, we design polelyelectrolyte multilayer films made of poly(L-lysine) and a photo-reactive hyaluronan derivative. These films can be photo-crosslinked through a photomask to create spatial patterns of rigidity. Quartz substrates incorporating a chromium mask are prepared to expose selectively the film to UV light (in a physiological buffer), without any direct contact between the photomask and the soft film. We show that these micropatterns are chemically homogeneous and flat, without any preferential adsorption of adhesive proteins. Three groups of pattern geometries differing by their shape (circles or lines), size (form 2 to 100 μm) or interspacing distance between the motifs are used to study the adhesion and spatial organization of myoblast cells. On large circular micropatterns, the cells form large assemblies that are confined to the stiffest parts. Conversely, when the size of the rigidity patterns is subcellular, the cells respond by forming protrusions. Finally, on linear micropatterns of rigidity, myoblasts align and their nuclei drastically elongate in specific conditions. These results pave the way for the study of the different steps of myoblast fusion in response to matrix rigidity in well-defined geometrical conditions.

摘要

细胞对其微环境的硬度敏感,尤其对硬度的空间组织敏感。对这一现象的研究有助于更好地理解细胞对基质硬度空间变化的反应机制。在这项工作中,我们设计了由聚(L-赖氨酸)和光反应性透明质酸衍生物制成的聚电解质多层膜。这些膜可以通过光掩模进行光交联,以创建刚性的空间图案。制备了带有铬掩模的石英基板,以便在生理缓冲液中将膜选择性地暴露于紫外光下,光掩模与软膜之间没有任何直接接触。我们表明,这些微图案在化学上是均匀且平坦的,没有任何粘附蛋白的优先吸附。使用三组形状(圆形或线条)、尺寸(2至100μm)或图案之间的间距不同的图案几何形状来研究成肌细胞的粘附和空间组织。在大的圆形微图案上,细胞形成局限于最硬部分的大聚集体。相反,当刚性图案的尺寸为亚细胞大小时,细胞通过形成突起做出反应。最后,在刚性的线性微图案上,成肌细胞在特定条件下排列,其细胞核急剧伸长。这些结果为在明确的几何条件下研究成肌细胞融合对基质硬度反应的不同步骤铺平了道路。

相似文献

1
Rigidity-patterned polyelectrolyte films to control myoblast cell adhesion and spatial organization.
Adv Funct Mater. 2013 Jul 19;23(7):3432-3442. doi: 10.1002/adfm.201203580.
2
Manipulation of the adhesive behaviour of skeletal muscle cells on soft and stiff polyelectrolyte multilayers.
Acta Biomater. 2010 Nov;6(11):4238-48. doi: 10.1016/j.actbio.2010.06.014. Epub 2010 Jun 19.
4
Engineering muscle tissues on microstructured polyelectrolyte multilayer films.
Tissue Eng Part A. 2012 Aug;18(15-16):1664-76. doi: 10.1089/ten.TEA.2012.0079. Epub 2012 Jul 9.
5
Spatial control of cellular adhesion using photo-crosslinked micropatterned polyelectrolyte multilayer films.
Biomaterials. 2009 Apr;30(12):2209-18. doi: 10.1016/j.biomaterials.2008.12.060. Epub 2009 Jan 17.
6
Effect of RGD functionalization and stiffness modulation of polyelectrolyte multilayer films on muscle cell differentiation.
Acta Biomater. 2013 May;9(5):6468-80. doi: 10.1016/j.actbio.2012.12.015. Epub 2012 Dec 20.
7
Polyelectrolyte multilayer films of controlled stiffness modulate myoblast cells differentiation.
Adv Funct Mater. 2008;18(9):1378-1389. doi: 10.1002/adfm.200701297.
9
Dynamic stiffness of polyelectrolyte multilayer films based on disulfide bonds for in situ control of cell adhesion.
J Mater Chem B. 2015 Oct 14;3(38):7546-7553. doi: 10.1039/c5tb01151e. Epub 2015 Sep 2.
10
Cell adhesion testing using novel testbeds containing micropatterns of complex nanoengineered multilayer films.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:2671-4. doi: 10.1109/IEMBS.2004.1403767.

引用本文的文献

1
Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds.
Tissue Eng Regen Med. 2016 Apr 5;13(2):126-139. doi: 10.1007/s13770-016-0026-x. eCollection 2016 Apr.
2
Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration.
Theranostics. 2017 Aug 11;7(13):3387-3397. doi: 10.7150/thno.19748. eCollection 2017.
4
Control of Cell Alignment and Morphology by Redesigning ECM-Mimetic Nanotopography on Multilayer Membranes.
Adv Healthc Mater. 2017 Aug;6(15). doi: 10.1002/adhm.201601462. Epub 2017 Mar 29.
5
Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering.
Molecules. 2016 Aug 26;21(9):1128. doi: 10.3390/molecules21091128.
6
Spatio-Temporal Control of LbL Films for Biomedical Applications: From 2D to 3D.
Adv Healthc Mater. 2015 Apr 22;4(6):811-30. doi: 10.1002/adhm.201400715. Epub 2015 Jan 27.
7
Influence of polyelectrolyte film stiffness on bacterial growth.
Biomacromolecules. 2013 Feb 11;14(2):520-8. doi: 10.1021/bm301774a. Epub 2013 Jan 15.

本文引用的文献

1
Extracellular-matrix tethering regulates stem-cell fate.
Nat Mater. 2012 May 27;11(7):642-9. doi: 10.1038/nmat3339.
2
Engineering muscle tissues on microstructured polyelectrolyte multilayer films.
Tissue Eng Part A. 2012 Aug;18(15-16):1664-76. doi: 10.1089/ten.TEA.2012.0079. Epub 2012 Jul 9.
3
Matrix nanotopography as a regulator of cell function.
J Cell Biol. 2012 Apr 30;197(3):351-60. doi: 10.1083/jcb.201108062.
4
Nanotopography as modulator of human mesenchymal stem cell function.
Biomaterials. 2012 Jul;33(20):4998-5003. doi: 10.1016/j.biomaterials.2012.03.053. Epub 2012 Apr 18.
5
Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness.
Proc Natl Acad Sci U S A. 2012 May 1;109(18):6933-8. doi: 10.1073/pnas.1117810109. Epub 2012 Apr 16.
7
Cell adhesion nucleation regulated by substrate stiffness: a Monte Carlo study.
J Biomech. 2012 Jan 3;45(1):116-22. doi: 10.1016/j.jbiomech.2011.09.013. Epub 2011 Oct 20.
8
Artificial niche microarrays for probing single stem cell fate in high throughput.
Nat Methods. 2011 Oct 9;8(11):949-55. doi: 10.1038/nmeth.1732.
9
Patterning the differentiation of C2C12 skeletal myoblasts.
Integr Biol (Camb). 2011 Sep;3(9):897-909. doi: 10.1039/c1ib00058f. Epub 2011 Aug 15.
10
Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels.
Biomaterials. 2011 Apr;32(11):2725-33. doi: 10.1016/j.biomaterials.2011.01.009. Epub 2011 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验