Suppr超能文献

非增强CT上蛛网膜下腔出血的自动定量分析

Automatic quantification of subarachnoid hemorrhage on noncontrast CT.

作者信息

Boers A M, Zijlstra I A, Gathier C S, van den Berg R, Slump C H, Marquering H A, Majoie C B

机构信息

From the Departments of Radiology (A.M.B., I.A.Z., R.v.d.B., H.A.M., C.B.M.) Biomedical Engineering and Physics (A.M.B., H.A.M.), Academic Medical Center, Amsterdam, the Netherlands Institute of Technical Medicine (A.M.B.)

From the Departments of Radiology (A.M.B., I.A.Z., R.v.d.B., H.A.M., C.B.M.).

出版信息

AJNR Am J Neuroradiol. 2014 Dec;35(12):2279-86. doi: 10.3174/ajnr.A4042. Epub 2014 Aug 7.

Abstract

BACKGROUND AND PURPOSE

Quantification of blood after SAH on initial NCCT is an important radiologic measure to predict patient outcome and guide treatment decisions. In current scales, hemorrhage volume and density are not accounted for. The purpose of this study was to develop and validate a fully automatic method for SAH volume and density quantification.

MATERIALS AND METHODS

The automatic method is based on a relative density increase due to the presence of blood from different brain structures in NCCT. The method incorporates density variation due to partial volume effect, beam-hardening, and patient-specific characteristics. For validation, automatic volume and density measurements were compared with manual delineation on NCCT images of 30 patients by 2 radiologists. The agreement with the manual reference was compared with interobserver agreement by using the intraclass correlation coefficient and Bland-Altman analysis for volume and density.

RESULTS

The automatic measurement successfully segmented the hemorrhage of all 30 patients and showed high correlation with the manual reference standard for hemorrhage volume (intraclass correlation coefficient = 0.98 [95% CI, 0.96-0.99]) and hemorrhage density (intraclass correlation coefficient = 0.80 [95% CI, 0.62-0.90]) compared with intraclass correlation coefficient = 0.97 (95% CI, 0.77-0.99) and 0.98 (95% CI, 0.89-0.99) for manual interobserver agreement. Mean SAH volume and density were, respectively, 39.3 ± 31.5 mL and 62.2 ± 5.9 Hounsfield units for automatic measurement versus 39.7 ± 32.8 mL and 61.4 ± 7.3 Hounsfield units for manual measurement. The accuracy of the automatic method was excellent, with limits of agreement of -12.9-12.1 mL and -7.6-9.2 Hounsfield units.

CONCLUSIONS

The automatic volume and density quantification is very accurate compared with manual assessment. As such, it has the potential to provide important determinants in clinical practice and research.

摘要

背景与目的

在首次非增强计算机断层扫描(NCCT)上对蛛网膜下腔出血(SAH)后的血量进行量化是预测患者预后和指导治疗决策的一项重要影像学指标。在当前的量表中,未考虑出血体积和密度。本研究的目的是开发并验证一种用于SAH体积和密度量化的全自动方法。

材料与方法

该自动方法基于NCCT中不同脑结构因血液存在而导致的相对密度增加。该方法纳入了因部分容积效应、线束硬化和患者特定特征引起的密度变化。为进行验证,由两名放射科医生将自动体积和密度测量结果与30例患者的NCCT图像上的手动勾勒结果进行比较。使用组内相关系数以及针对体积和密度的Bland-Altman分析,将与手动参考标准的一致性与观察者间的一致性进行比较。

结果

自动测量成功分割了所有30例患者的出血区域,与手动参考标准相比,出血体积(组内相关系数=0.98[95%CI,0.96 - 0.99])和出血密度(组内相关系数=0.80[95%CI,0.62 - 0.90])显示出高度相关性,而手动观察者间一致性的组内相关系数分别为0.97(95%CI,0.77 - 0.99)和0.98(95%CI,0.89 - 0.99)。自动测量的平均SAH体积和密度分别为39.3±31.5 mL和62.2±5.9亨氏单位,而手动测量分别为39.7±32.8 mL和61.4±7.3亨氏单位。自动方法的准确性极佳,一致性界限为-12.9至12.1 mL和-7.6至9.2亨氏单位。

结论

与手动评估相比,自动体积和密度量化非常准确。因此,它有可能在临床实践和研究中提供重要的决定因素。

相似文献

1
Automatic quantification of subarachnoid hemorrhage on noncontrast CT.
AJNR Am J Neuroradiol. 2014 Dec;35(12):2279-86. doi: 10.3174/ajnr.A4042. Epub 2014 Aug 7.
3
Automated cerebral infarct volume measurement in follow-up noncontrast CT scans of patients with acute ischemic stroke.
AJNR Am J Neuroradiol. 2013 Aug;34(8):1522-7. doi: 10.3174/ajnr.A3463. Epub 2013 Mar 7.
4
Development and validation of intracranial thrombus segmentation on CT angiography in patients with acute ischemic stroke.
PLoS One. 2014 Jul 17;9(7):e101985. doi: 10.1371/journal.pone.0101985. eCollection 2014.
5
Interobserver variability in the interpretation of computed tomography following aneurysmal subarachnoid hemorrhage.
J Neurosurg. 2011 Dec;115(6):1191-6. doi: 10.3171/2011.7.JNS11725. Epub 2011 Aug 5.
6
Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans.
Int J Comput Assist Radiol Surg. 2012 Jul;7(4):507-16. doi: 10.1007/s11548-011-0664-3. Epub 2011 Nov 12.
7
Robust, standardized quantification of pulmonary emphysema in low dose CT exams.
Acad Radiol. 2011 Nov;18(11):1382-90. doi: 10.1016/j.acra.2011.06.015.

引用本文的文献

2
Deep learning-based multiclass segmentation in aneurysmal subarachnoid hemorrhage.
Front Neurol. 2024 Dec 13;15:1490216. doi: 10.3389/fneur.2024.1490216. eCollection 2024.
3
Can the radiomics features of intracranial aneurysms predict the prognosis of aneurysmal subarachnoid hemorrhage?
Front Neurosci. 2024 Oct 21;18:1446784. doi: 10.3389/fnins.2024.1446784. eCollection 2024.
5
Quantification of blood and CSF volume to predict outcome after aneurysmal subarachnoid hemorrhage.
Neurosurg Rev. 2024 Oct 8;47(1):752. doi: 10.1007/s10143-024-03001-y.
6
Optimizing Photon-Counting Detector CT for Imaging Intracranial Aneurysms.
AJNR Am J Neuroradiol. 2024 Oct 3;45(10):1458-1460. doi: 10.3174/ajnr.A8400.
9
Comparison of scales for the evaluation of aneurysmal subarachnoid haemorrhage: a retrospective cohort study.
Eur Radiol. 2024 Nov;34(11):7526-7536. doi: 10.1007/s00330-024-10814-4. Epub 2024 Jun 5.
10
Automatic segmentation of hemorrhagic transformation on follow-up non-contrast CT after acute ischemic stroke.
Front Neuroinform. 2024 Apr 16;18:1382630. doi: 10.3389/fninf.2024.1382630. eCollection 2024.

本文引用的文献

2
Iterative correction of beam hardening artifacts in CT.
Med Phys. 2011 Jul;38 Suppl 1:S36. doi: 10.1118/1.3577758.
4
elastix: a toolbox for intensity-based medical image registration.
IEEE Trans Med Imaging. 2010 Jan;29(1):196-205. doi: 10.1109/TMI.2009.2035616. Epub 2009 Nov 17.
5
Intraclass correlations: uses in assessing rater reliability.
Psychol Bull. 1979 Mar;86(2):420-8. doi: 10.1037//0033-2909.86.2.420.
7
Construction of a 3D probabilistic atlas of human cortical structures.
Neuroimage. 2008 Feb 1;39(3):1064-80. doi: 10.1016/j.neuroimage.2007.09.031. Epub 2007 Nov 26.
8
Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage.
Stroke. 2007 Aug;38(8):2315-21. doi: 10.1161/STROKEAHA.107.484360. Epub 2007 Jun 14.
9
Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain.
Comput Med Imaging Graph. 2007 Jun-Jul;31(4-5):285-98. doi: 10.1016/j.compmedimag.2007.02.010. Epub 2007 Mar 21.
10
Subarachnoid haemorrhage.
Lancet. 2007 Jan 27;369(9558):306-18. doi: 10.1016/S0140-6736(07)60153-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验