Suppr超能文献

在650至1600纳米近红外光谱范围内对组织模拟体模中的对比度进行多光谱测量。

Multispectral measurement of contrast in tissue-mimicking phantoms in near-infrared spectral range of 650 to 1600 nm.

作者信息

Salo Daniel, Zhang Hairong, Kim David M, Berezin Mikhail Y

出版信息

J Biomed Opt. 2014 Aug;19(8):086008. doi: 10.1117/1.JBO.19.8.086008.

Abstract

In order to identify the optimal imaging conditions for the highest spatial contrast in biological tissue, we explored the properties of a tissue-mimicking phantom as a function of the wavelengths in a broad range of near-infrared spectra (650 to 1600 nm). Our customized multispectral hardware, which featured a scanning transmission microscope and imaging spectrographs equipped with silicon and InGaAs charge-coupled diode array detectors, allowed for direct comparison of the Michelson contrast obtained from a phantom composed of a honeycomb grid, Intralipid, and India ink. The measured contrast depended on the size of the grid, luminance, and the wavelength of measurements. We demonstrated that at low thickness of the phantom, a reasonable contrast of the objects can be achieved at any wavelength between 700 and 1400 nm and between 1500 and 1600 nm. At larger thicknesses, such contrast can be achieved mostly between 1200 and 1350 nm. These results suggest that distinguishing biological features in deep tissue and developing contrast agents for in vivo may benefit from imaging in this spectral range.

摘要

为了确定生物组织中实现最高空间对比度的最佳成像条件,我们研究了一种组织模拟体模的特性,该特性是近红外光谱(650至1600纳米)中波长的函数。我们定制的多光谱硬件配备了扫描透射显微镜和成像光谱仪,以及硅和砷化铟镓电荷耦合二极管阵列探测器,能够直接比较由蜂窝网格、英脱利匹特(一种脂肪乳剂)和印度墨水组成的体模所获得的迈克尔逊对比度。测量得到的对比度取决于网格大小、亮度和测量波长。我们证明,在体模厚度较小时,在700至1400纳米以及1500至1600纳米之间的任何波长下,都可以实现物体的合理对比度。在较大厚度时,这种对比度大多可以在1200至1350纳米之间实现。这些结果表明,区分深层组织中的生物特征以及开发用于体内的造影剂可能受益于在此光谱范围内进行成像。

相似文献

2
Evaluation of Mobile Phone Performance for Near-Infrared Fluorescence Imaging.
IEEE Trans Biomed Eng. 2017 Jul;64(7):1650-1653. doi: 10.1109/TBME.2016.2601014. Epub 2016 Aug 19.
4
Development of high-sensitivity near-infrared fluorescence imaging device for early cancer detection.
Biomed Instrum Technol. 2005 Jan-Feb;39(1):75-85. doi: 10.2345/0899-8205(2005)39[75:DOHNFI]2.0.CO;2.
6
Hyperspectral confocal microscope.
Appl Opt. 2006 Aug 20;45(24):6283-91. doi: 10.1364/ao.45.006283.
8
Epsilon-near-zero meta-lens for high resolution wide-field imaging.
Opt Express. 2014 Dec 29;22(26):31875-83. doi: 10.1364/OE.22.031875.
9
Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery.
Anal Chem. 2007 Jun 15;79(12):4709-15. doi: 10.1021/ac070367n. Epub 2007 May 11.
10
Image guided near-infrared spectroscopy of breast tissue in vivo using boundary element method.
J Biomed Opt. 2010 Nov-Dec;15(6):061703. doi: 10.1117/1.3499419.

引用本文的文献

1
Photoacoustic and absorption spectroscopy imaging analysis of human blood.
PLoS One. 2023 Aug 4;18(8):e0289704. doi: 10.1371/journal.pone.0289704. eCollection 2023.
2
Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines.
Nat Methods. 2022 Mar;19(3):353-358. doi: 10.1038/s41592-022-01394-6. Epub 2022 Feb 28.
3
Trans-illumination intestine projection imaging of intestinal motility in mice.
Nat Commun. 2021 Mar 16;12(1):1682. doi: 10.1038/s41467-021-21930-w.
4
Noncontact recognition of fluorescently labeled objects in deep tissue via a novel optical light beam arrangement.
PLoS One. 2018 Dec 19;13(12):e0208236. doi: 10.1371/journal.pone.0208236. eCollection 2018.
5
Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9080-9085. doi: 10.1073/pnas.1803210115. Epub 2018 Aug 27.
9
Nanothermometry: From Microscopy to Thermal Treatments.
Chemphyschem. 2016 Jan 4;17(1):27-36. doi: 10.1002/cphc.201500753. Epub 2015 Nov 3.
10
1D polymeric platinum cyanoximate: a strategy toward luminescence in the near-infrared region beyond 1000 nm.
Inorg Chem. 2015 Feb 16;54(4):1890-900. doi: 10.1021/ic502805h. Epub 2015 Jan 23.

本文引用的文献

3
Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm.
Angew Chem Int Ed Engl. 2013 Dec 2;52(49):13002-6. doi: 10.1002/anie.201307346. Epub 2013 Oct 31.
4
In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window.
Biomaterials. 2014 Jan;35(1):393-400. doi: 10.1016/j.biomaterials.2013.10.010. Epub 2013 Oct 15.
5
Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window.
Small. 2014 Mar 26;10(6):1141-54. doi: 10.1002/smll.201301716. Epub 2013 Oct 14.
6
Multispectral imaging in the extended near-infrared window based on endogenous chromophores.
J Biomed Opt. 2013 Oct;18(10):101318. doi: 10.1117/1.JBO.18.10.101318.
7
Near-infrared fluorescent proteins for multicolor in vivo imaging.
Nat Methods. 2013 Aug;10(8):751-4. doi: 10.1038/nmeth.2521. Epub 2013 Jun 16.
8
BLOOD TRIGGERED RAPID RELEASE POROUS NANOCAPSULES.
RSC Adv. 2013 Jan 24;3(16):5547-5555. doi: 10.1039/C3RA22693J.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验