Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland.
Nano Lett. 2014 Sep 10;14(9):5335-41. doi: 10.1021/nl5023964. Epub 2014 Aug 22.
Room temperature optically detected magnetic resonance of a single quantum object with nanoscale position control is an outstanding challenge in many areas, particularly in the life sciences. We introduce a novel approach to control the nitrogen-vacancy (NV) centers hosted in a single fluorescent nanodiamond (FND) for which an anti-Brownian electrokinetic trap (ABEL) performs the position control and an integrated radiofrequency (RF) circuit provides enhanced magnetic flux density for ensemble spin-state control simultaneously. We demonstrate static magnetic field sensing in platforms compatible with ABEL trap. With the advances in the synthesis and functionalization of stable arbitrarily small FNDs, we foresee the use of our device for the trapping and manipulation of single molecular-sized FNDs in aqueous solution.
室温下对具有纳米级位置控制的单量子物体的光检测磁共振是许多领域的一项突出挑战,特别是在生命科学领域。我们介绍了一种控制氮空位(NV)中心的新方法,该方法使用反布朗运动电动流动陷阱(ABEL)进行位置控制,并且集成的射频(RF)电路同时提供增强的磁通量密度以进行整体自旋态控制。我们展示了与 ABEL 陷阱兼容的平台中的静态磁场感应。随着稳定的任意小荧光纳米金刚石(FND)的合成和功能化的进步,我们预计我们的设备将用于在水溶液中捕获和操纵单个分子大小的 FND。