Optics and Photonics Research Group, Faculty of Engineering, University Park, Nottingham, NG7 2RD, UK.
School of Physics, University of Melbourne, Parkville, 3010, Australia.
Small. 2019 May;15(22):e1900455. doi: 10.1002/smll.201900455. Epub 2019 Apr 22.
Fluorescent nanodiamonds (fNDs) containing nitrogen vacancy (NV) centers are promising candidates for quantum sensing in biological environments. This work describes the fabrication and implementation of electrospun poly lactic-co-glycolic acid (PLGA) nanofibers embedded with fNDs for optical quantum sensing in an environment, which recapitulates the nanoscale architecture and topography of the cell niche. A protocol that produces uniformly dispersed fNDs within electrospun nanofibers is demonstrated and the resulting fibers are characterized using fluorescent microscopy and scanning electron microscopy (SEM). Optically detected magnetic resonance (ODMR) and longitudinal spin relaxometry results for fNDs and embedded fNDs are compared. A new approach for fast detection of time varying magnetic fields external to the fND embedded nanofibers is demonstrated. ODMR spectra are successfully acquired from a culture of live differentiated neural stem cells functioning as a connected neural network grown on fND embedded nanofibers. This work advances the current state of the art in quantum sensing by providing a versatile sensing platform that can be tailored to produce physiological-like cell niches to replicate biologically relevant growth environments and fast measurement protocols for the detection of co-ordinated endogenous signals from clinically relevant populations of electrically active neuronal circuits.
含氮空位 (NV) 中心的荧光纳米金刚石 (fND) 是生物环境中量子传感的有前途的候选者。本工作描述了在环境中嵌入荧光纳米金刚石的电纺聚乳酸-共-羟基乙酸 (PLGA) 纳米纤维的制造和实施,该环境再现了细胞小生境的纳米级结构和形貌。展示了一种在电纺纳米纤维中均匀分散 fND 的方法,并使用荧光显微镜和扫描电子显微镜 (SEM) 对所得纤维进行了表征。比较了 fND 和嵌入 fND 的光检测磁共振 (ODMR) 和纵向自旋弛豫测量结果。展示了一种快速检测外部时变磁场的新方法,该磁场嵌入在含有 fND 的纳米纤维中。ODMR 光谱成功地从在含有 fND 的纳米纤维上生长的作为互联神经网络的分化神经干细胞的培养物中获得。这项工作通过提供一种多功能的传感平台来推进量子传感的最新进展,该平台可以根据需要进行定制,以产生类似于生理的细胞小生境,复制与生物相关的生长环境,并制定快速测量协议,以检测来自具有临床相关性的电活性神经元电路的协调内源性信号。