Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA.
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
Nat Commun. 2016 Jul 19;7:12250. doi: 10.1038/ncomms12250.
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.
金刚石中氮空位(NV)中心的电子自旋是用于纳米尺度传感和量子信息的重要量子资源。将 NV 自旋与悬浮光机械谐振器相结合,将为新型应用提供混合量子系统。在这里,我们通过光学悬浮纳米金刚石,并在低真空环境下演示了其内置 NV 中心的电子自旋控制。我们观察到,当气压降低时,电子自旋共振(ESR)的强度增强。为了更好地理解这一系统,我们研究了阱功率的影响,并通过 ESR 测量了悬浮纳米金刚石的绝对内部温度,同时对应变效应进行了校准。我们还观察到,氧气和氦气对纳米金刚石 NV 中心的光致发光和 ESR 对比度都有不同的影响,这表明 NV 中心在氧气气体传感方面具有潜在的应用。我们的研究结果为研究宏观量子力学的悬浮自旋光机械系统铺平了道路。