Department of Biomedical Engineering, National University of Singapore, Singapore.
Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore; Clinical Imaging Research Centre, National University of Singapore, Singapore.
Neuroimage. 2014 Nov 15;102 Pt 2:913-22. doi: 10.1016/j.neuroimage.2014.08.001. Epub 2014 Aug 8.
Accurate and consistent segmentation of brain white matter bundles at neonatal stage plays an important role in understanding brain development and detecting white matter abnormalities for the prediction of psychiatric disorders. Due to the complexity of white matter anatomy and the spatial resolution of diffusion-weighted MR imaging, multiple fiber bundles can pass through one voxel. The goal of this study is to assign one or multiple anatomical labels of white matter bundles to each voxel to reflect complex white matter anatomy of the neonatal brain. For this, we develop a supervised multi-label k-nearest neighbor (ML-kNN) classification algorithm in Riemannian diffusion tensor spaces. Our ML-kNN considers diffusion tensors lying on the Log-Euclidean Riemannian manifold of symmetric positive definite (SPD) matrices and their corresponding vector space as feature space. The ML-kNN utilizes the maximum a posteriori (MAP) principle to make the prediction of white matter labels by reasoning with the labeling information derived from the neighbors without assuming any probabilistic distribution of the features. We show that our approach automatically learns the number of white matter bundles at a location and provides anatomical annotation of the neonatal white matter. In addition, our approach also provides the binary mask for individual white matter bundles to facilitate tract-based statistical analysis in clinical studies. We apply this method to automatically segment 13 white matter bundles of the neonatal brain and examine the segmentation accuracy against semi-manual labels derived from tractography.
准确且一致地分割新生儿期的脑白质束对于理解大脑发育和检测白质异常以预测精神障碍具有重要作用。由于白质解剖结构的复杂性和弥散加权磁共振成像的空间分辨率,多个纤维束可以穿过一个体素。本研究的目的是为每个体素分配一个或多个白质束的解剖标签,以反映新生儿大脑的复杂白质解剖结构。为此,我们在黎曼扩散张量空间中开发了一种监督多标签 k-最近邻 (ML-kNN) 分类算法。我们的 ML-kNN 考虑了位于对称正定 (SPD) 矩阵的对数欧几里得黎曼流形及其对应的向量空间上的扩散张量,并将其作为特征空间。ML-kNN 利用最大后验 (MAP) 原理,通过与来自邻居的标记信息进行推理来进行白质标签的预测,而无需假设特征的任何概率分布。我们表明,我们的方法可以自动学习一个位置处的白质束数量,并对白质进行解剖注释。此外,我们的方法还为单个白质束提供了二进制掩模,以促进临床研究中的基于束的统计分析。我们将此方法应用于自动分割新生儿脑的 13 个白质束,并根据示踪术得出的半手动标签检查分割准确性。