Suppr超能文献

对白质束分割自动化方法的系统综述。

A systematic review of automated methods to perform white matter tract segmentation.

作者信息

Joshi Ankita, Li Hailong, Parikh Nehal A, He Lili

机构信息

Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.

Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.

出版信息

Front Neurosci. 2024 Mar 19;18:1376570. doi: 10.3389/fnins.2024.1376570. eCollection 2024.

Abstract

White matter tract segmentation is a pivotal research area that leverages diffusion-weighted magnetic resonance imaging (dMRI) for the identification and mapping of individual white matter tracts and their trajectories. This study aims to provide a comprehensive systematic literature review on automated methods for white matter tract segmentation in brain dMRI scans. Articles on PubMed, ScienceDirect [NeuroImage, NeuroImage (Clinical), Medical Image Analysis], Scopus and IEEEXplore databases and Conference proceedings of Medical Imaging Computing and Computer Assisted Intervention Society (MICCAI) and International Symposium on Biomedical Imaging (ISBI), were searched in the range from January 2013 until September 2023. This systematic search and review identified 619 articles. Adhering to the specified search criteria using the query, " OR OR fiber OR OR OR 59 published studies were selected. Among these, 27% employed direct voxel-based methods, 25% applied streamline-based clustering methods, 20% used streamline-based classification methods, 14% implemented atlas-based methods, and 14% utilized hybrid approaches. The paper delves into the research gaps and challenges associated with each of these categories. Additionally, this review paper illuminates the most frequently utilized public datasets for tract segmentation along with their specific characteristics. Furthermore, it presents evaluation strategies and their key attributes. The review concludes with a detailed discussion of the challenges and future directions in this field.

摘要

白质束分割是一个关键的研究领域,它利用扩散加权磁共振成像(dMRI)来识别和绘制个体白质束及其轨迹。本研究旨在对脑dMRI扫描中白质束分割的自动化方法进行全面系统的文献综述。检索了PubMed、ScienceDirect[《神经影像学》《神经影像学(临床版)》《医学图像分析》]、Scopus和IEEEXplore数据库以及医学影像计算与计算机辅助干预学会(MICCAI)和生物医学成像国际研讨会(ISBI)的会议论文集,检索范围为2013年1月至2023年9月。通过此次系统检索和综述,共识别出619篇文章。使用查询词“OR OR fiber OR OR OR”遵循指定的搜索标准,最终筛选出59项已发表的研究。其中,27%采用基于体素的直接方法,25%应用基于流线的聚类方法,20%使用基于流线的分类方法,14%实施基于图谱的方法,14%采用混合方法。本文深入探讨了与这些类别相关的研究差距和挑战。此外,这篇综述文章还介绍了用于束分割的最常用公共数据集及其具体特征。此外,还介绍了评估策略及其关键属性。综述最后详细讨论了该领域的挑战和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a2/10985163/5ab21a170eac/fnins-18-1376570-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验