Lee Yong Heon, Helmann John D
Department of Microbiology, Cornell University, Ithaca, New York, USA Department of Biomedical Laboratory Science, Dongseo University, Busan, South Korea.
Department of Microbiology, Cornell University, Ithaca, New York, USA
J Bacteriol. 2014 Nov;196(21):3700-11. doi: 10.1128/JB.02022-14. Epub 2014 Aug 11.
Combinations of glycopeptides and β-lactams exert synergistic antibacterial activity, but the evolutionary mechanisms driving resistance to both antibiotics remain largely unexplored. By repeated subculturing with increasing vancomycin (VAN) and cefuroxime (CEF) concentrations, we isolated an evolved strain of the model bacterium Bacillus subtilis with reduced susceptibility to both antibiotics. Whole-genome sequencing revealed point mutations in genes encoding the major σ factor of RNA polymerase (sigA), a cell shape-determining protein (mreB), and the ρ termination factor (rho). Genetic-reconstruction experiments demonstrated that the G-to-C substitution at position 336 encoded by sigA (sigA(G336C)), in the domain that recognizes the -35 promoter region, is sufficient to reduce susceptibility to VAN and works cooperatively with the rho(G56C) substitution to increase CEF resistance. Transcriptome analyses revealed that the sigA(G336C) substitution has wide-ranging effects, including elevated expression of the general stress σ factor (σ(B)) regulon, which is required for CEF resistance, and decreased expression of the glpTQ genes, which leads to fosfomycin (FOS) resistance. Our findings suggest that mutations in the core transcriptional machinery may facilitate the evolution of resistance to multiple cell wall antibiotics.
糖肽类和β-内酰胺类药物联合使用具有协同抗菌活性,但导致对这两种抗生素产生耐药性的进化机制在很大程度上仍未得到探索。通过在万古霉素(VAN)和头孢呋辛(CEF)浓度不断增加的情况下进行反复传代培养,我们分离出了一株对这两种抗生素敏感性降低的模式细菌枯草芽孢杆菌进化菌株。全基因组测序揭示了编码RNA聚合酶主要σ因子(sigA)、一种细胞形状决定蛋白(mreB)和ρ终止因子(rho)的基因中的点突变。基因重建实验表明,sigA编码的第336位的G到C替换(sigA(G336C)),在识别-35启动子区域的结构域中,足以降低对VAN的敏感性,并与rho(G56C)替换协同作用以增加对CEF的抗性。转录组分析表明,sigA(G336C)替换具有广泛的影响,包括增加对CEF抗性所需的一般应激σ因子(σ(B))调控子的表达,以及降低导致对磷霉素(FOS)抗性的glpTQ基因的表达。我们的研究结果表明,核心转录机制中的突变可能促进对多种细胞壁抗生素耐药性的进化。