文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

局部遗传背景塑造了基因调控网络的功能。

Local genetic context shapes the function of a gene regulatory network.

机构信息

Institute of Science and Technology Austria, Klosterneuburg, Austria.

Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center Of Molecular Biology, University of Vienna, Vienna, Austria.

出版信息

Elife. 2021 Mar 8;10:e65993. doi: 10.7554/eLife.65993.


DOI:10.7554/eLife.65993
PMID:33683203
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7968929/
Abstract

Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks (GRNs) remains a major challenge. Here, we use a well-defined synthetic GRN to study in how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one GRN with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Transcriptional read-through is the main molecular mechanism that places one transcriptional unit (TU) within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual TUs, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of GRNs.

摘要

基因表达水平受到多种共存的分子机制的影响。其中一些相互作用,如转录因子和启动子的相互作用,已经得到了广泛的研究。然而,预测基因调控网络 (GRN) 的表型仍然是一个主要的挑战。在这里,我们使用一个定义明确的合成 GRN 来研究网络表型如何取决于局部遗传背景,即转录因子及其相对位置的遗传邻域。我们表明,一个具有固定拓扑的 GRN 不仅可以显示出不同的数量表现,而且可以显示出不同的质量表现,这完全取决于其组成部分的局部遗传背景。转录通读是将一个转录单元 (TU) 放置在两个单独的调控子中而不需要复杂的调节序列的主要分子机制。我们提出,单个 TU 的相对顺序,及其组合复杂性的潜力,在塑造 GRN 的表型方面起着重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/9db7e86f14eb/elife-65993-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/e9ccddfd0248/elife-65993-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/738409ae2e84/elife-65993-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/59df602b161d/elife-65993-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/23f6206d7708/elife-65993-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/c2655a493be0/elife-65993-fig1-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/81e71dba14e8/elife-65993-fig1-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/fe821f6f5df3/elife-65993-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/b663a2cdafcd/elife-65993-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/4b00bb6acca4/elife-65993-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/29c3f8620214/elife-65993-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/318a93f79c56/elife-65993-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/e770af194030/elife-65993-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/6af9ba875a63/elife-65993-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/41f9595af33f/elife-65993-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/3fc736895cd4/elife-65993-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/7c501219300a/elife-65993-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/9db7e86f14eb/elife-65993-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/e9ccddfd0248/elife-65993-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/738409ae2e84/elife-65993-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/59df602b161d/elife-65993-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/23f6206d7708/elife-65993-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/c2655a493be0/elife-65993-fig1-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/81e71dba14e8/elife-65993-fig1-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/fe821f6f5df3/elife-65993-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/b663a2cdafcd/elife-65993-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/4b00bb6acca4/elife-65993-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/29c3f8620214/elife-65993-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/318a93f79c56/elife-65993-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/e770af194030/elife-65993-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/6af9ba875a63/elife-65993-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/41f9595af33f/elife-65993-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/3fc736895cd4/elife-65993-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/7c501219300a/elife-65993-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911f/7968929/9db7e86f14eb/elife-65993-fig7.jpg

相似文献

[1]
Local genetic context shapes the function of a gene regulatory network.

Elife. 2021-3-8

[2]
Inference of Gene Regulatory Network Based on Local Bayesian Networks.

PLoS Comput Biol. 2016-8-1

[3]
Feedbacks from the metabolic network to the genetic network reveal regulatory modules in E. coli and B. subtilis.

PLoS One. 2018-10-4

[4]
GreA and GreB Enhance Expression of Escherichia coli RNA Polymerase Promoters in a Reconstituted Transcription-Translation System.

ACS Synth Biol. 2016-9-16

[5]
Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli.

PLoS One. 2009-10-19

[6]
Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach.

Genome Biol. 2008-10-27

[7]
Interplay between network structures, regulatory modes and sensing mechanisms of transcription factors in the transcriptional regulatory network of E. coli.

J Mol Biol. 2007-9-28

[8]
Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis.

Proc Natl Acad Sci U S A. 2010-9-27

[9]
An order independent algorithm for inferring gene regulatory network using quantile value for conditional independence tests.

Sci Rep. 2021-4-7

[10]
Transcriptional regulation shapes the organization of genes on bacterial chromosomes.

Nucleic Acids Res. 2009-6

引用本文的文献

[1]
Synthetic gene circuit evolution: Insights and opportunities at the mid-scale.

Cell Chem Biol. 2024-8-15

[2]
Inference of differential gene regulatory networks using boosted differential trees.

Bioinform Adv. 2024-2-29

[3]
Advancing the scale of synthetic biology via cross-species transfer of cellular functions enabled by iModulon engraftment.

Nat Commun. 2024-3-15

[4]
DNA supercoiling in bacteria: state of play and challenges from a viewpoint of physics based modeling.

Front Microbiol. 2023-10-30

[5]
Assessing in vivo the impact of gene context on transcription through DNA supercoiling.

Nucleic Acids Res. 2023-10-13

[6]
Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system.

Nat Commun. 2023-3-17

[7]
A Maverick-like cluster in the genome of a pathogenic, moderately virulent strain of , ESV200, a transient biofilm producer.

Front Microbiol. 2023-1-26

[8]
Molecular basis for lethal cross-talk between two unrelated bacterial transcription factors - the regulatory protein of a restriction-modification system and the repressor of a defective prophage.

Nucleic Acids Res. 2022-10-28

[9]
Genetic context effects can override canonical cis regulatory elements in Escherichia coli.

Nucleic Acids Res. 2022-10-14

[10]
Automated Design of Robust Genetic Circuits: Structural Variants and Parameter Uncertainty.

ACS Synth Biol. 2021-12-17

本文引用的文献

[1]
Contextual dependencies expand the re-usability of genetic inverters.

Nat Commun. 2021-1-13

[2]
Gene amplification as a form of population-level gene expression regulation.

Nat Ecol Evol. 2020-3-9

[3]
High-Resolution Mapping of the Escherichia coli Chromosome Reveals Positions of High and Low Transcription.

Cell Syst. 2019-3-20

[4]
SMRT-Cappable-seq reveals complex operon variants in bacteria.

Nat Commun. 2018-9-10

[5]
Evolutionary potential of transcription factors for gene regulatory rewiring.

Nat Ecol Evol. 2018-9-10

[6]
Evolutionary Convergence of Pathway-Specific Enzyme Expression Stoichiometry.

Cell. 2018-3-29

[7]
Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains.

J Biotechnol. 2018-1-20

[8]
Chromosomal organization of transcription: in a nutshell.

Curr Genet. 2018-6

[9]
Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection.

Elife. 2017-7-25

[10]
Biophysical Constraints Arising from Compositional Context in Synthetic Gene Networks.

Cell Syst. 2017-7-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索