Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037 (USA).
Angew Chem Int Ed Engl. 2014 Sep 1;53(36):9430-48. doi: 10.1002/anie.201309399. Epub 2014 Aug 11.
Aryl sulfonyl chlorides (e.g. Ts-Cl) are beloved of organic chemists as the most commonly used S(VI) electrophiles, and the parent sulfuryl chloride, O2 S(VI) Cl2 , has also been relied on to create sulfates and sulfamides. However, the desired halide substitution event is often defeated by destruction of the sulfur electrophile because the S(VI) Cl bond is exceedingly sensitive to reductive collapse yielding S(IV) species and Cl(-) . Fortunately, the use of sulfur(VI) fluorides (e.g., R-SO2 -F and SO2 F2 ) leaves only the substitution pathway open. As with most of click chemistry, many essential features of sulfur(VI) fluoride reactivity were discovered long ago in Germany.6a Surprisingly, this extraordinary work faded from view rather abruptly in the mid-20th century. Here we seek to revive it, along with John Hyatt's unnoticed 1979 full paper exposition on CH2 CH-SO2 -F, the most perfect Michael acceptor ever found.98 To this history we add several new observations, including that the otherwise very stable gas SO2 F2 has excellent reactivity under the right circumstances. We also show that proton or silicon centers can activate the exchange of SF bonds for SO bonds to make functional products, and that the sulfate connector is surprisingly stable toward hydrolysis. Applications of this controllable ligation chemistry to small molecules, polymers, and biomolecules are discussed.
芳基磺酰氯(例如 Ts-Cl)是有机化学家最常用的 S(VI)亲电试剂,而母体磺酰氯 O2 S(VI)Cl2 也被用于生成硫酸盐和磺胺类化合物。然而,由于 S(VI)Cl 键对还原坍塌非常敏感,会生成 S(IV)物种和 Cl(-),因此期望的卤化物取代反应常常受阻。幸运的是,使用硫(六)氟化物(例如 R-SO2 -F 和 SO2 F2)只会留下取代途径。与大多数点击化学一样,硫(六)氟化物反应的许多基本特征很久以前就在德国被发现了。6a 令人惊讶的是,这项非凡的工作在 20 世纪中叶突然消失了。在这里,我们试图复兴它,以及 John Hyatt 在 1979 年关于 CH2 CH-SO2 -F 的完整论文阐述,这是迄今为止发现的最完美的迈克尔受体。98 我们将这些历史与一些新的观察结果结合起来,包括在适当的条件下,原本非常稳定的气体 SO2 F2 具有极好的反应性。我们还表明,质子或硅中心可以激活 SF 键与 SO 键的交换,以生成功能性产物,并且硫酸盐连接体对水解具有惊人的稳定性。讨论了这种可控连接化学在小分子、聚合物和生物分子中的应用。